

BENBROS

Separata para Dirección General de Urbanismo y Ordenación del Territorio

Proyecto Básico Modificado de Instalación Fotovoltaica "FV Mezquita Bensolar" e infraestructuras de evacuación en los TT.MM. de Jarque de la Val, Mezquita de Jarque y Cuevas de Almudén (Teruel)

Potencia pico: 60,015 MW Potencia instalada: 49,544 MW Capacidad de acceso: 42,00 MW

Promotor: Benbros Solar, S.L.

Ingeniería: Ingnova Proyectos

Junio 2025

ÍNDICE

1. DA	ATOS GENERALES	4
1.1.	OBJETO DEL PROYECTO	4
1.2.	Potencia instalada	4
1.2	2.1. Capacidad de acceso en el punto de conexión	4
1.2	2.2. Potencia instalada	5
1.3.	IDENTIFICACIÓN DEL TITULAR	5
1.4.	DATOS DEL PROYECTISTA	5
2. CA	RACTERIZACIÓN DE LA ZONA	6
2.1.	Situación	6
2.2.	Accesos a la planta	
3. DE	SCRIPCIÓN INSTALACIÓN SOLAR	13
3.1.	DESCRIPCIÓN INSTALACIÓN SOLAR	14
4. CO	OMPONENTES DE LA INSTALACIÓN FOTOVOLTAICA	15
4.1.	MÓDULOS FOTOVOLTAICOS	15
4.2.	Inversor fotovoltaico	16
4.3.	ESTRUCTURA SOPORTE (SEGUIDORES)	19
4.4.	ESTACIÓN DE POTENCIA TIPO SKID	20
5. DE	SCRIPCIÓN DE LA LÍNEA DE INTERCONEXIÓN INTERNA	22
5.1.	Información General	22
5.2.	Trazado	
5.3.	Características de la línea subterránea de media tensión	23
5.3	3.1. Características del conductor	23
6. SE	T ELEVADORA FV MEZQUITA BENSOLAR 220/30 KV + ENTRONQUE AÉRE	O-SUBTERRÁNEO 24
6.1.	Situación	24
6.2.	Acceso	
6.3.	Entronque aéreo-subterráneo	
6.4.	DESCRIPCIÓN DE LAS INSTALACIONES.	
· · · · ·	4.1. Datos generales	
	AT 220 KV SET ELEVADORA FV MEZQUITA BENSOLAR 220/30 KV – SET SI	
	ITA	
7.1.	Situación	30
7.2.	Trazado	
7.3.	Características de la línea subterránea de media tensión	
	3.1. Características del conductor	
	T SECCIONADORA MEZQUITA	
8.1.	SITUACIÓN	
8.2.	Acceso	
8.3.	DESCRIPCIÓN DE LAS INSTALACIONES	
8.3	3.1. Datos generales	

SEPARATA AL PROYECTO BÁSICO MODIFICADO DE INSTALACIÓN FOTOVOLTAICA "FV MEZQUITA BENSOLAR" E INFRAESTRUCTURAS DE EVACUACIÓN EN LOS TT.MM. DE JARQUE DE LA VAL, MEZQUITA DE JARQUE Y CUEVAS DE ALMUDÉN (TERUEL)

9.	PUNTO DE MEDIDA OFICIAL	38
10.	RESUMEN DE PRESUPUESTO	39
11.	PETICIÓN A LA ADMINISTRACIÓN COMPETENTE	40
12.	ANEXO: PLANOS	4

1. <u>Datos generales</u>

1.1. Objeto del proyecto

El objeto del presente documento es informar a la **Dirección General de Urbanismo y Ordenación del Territorio** de las actuaciones previstas para la ejecución de la Instalación Fotovoltaica FV Mezquita Bensolar de 60,015 MWp de potencia pico y 49,544 MWn de potencia instalada y sus infraestructuras de evacuación que se proyectan en los términos municipales de Jarque de la Val, Mezquita de Jarque y Cuevas de Almudén (Teruel), para que manifieste su oposición o reparos al trámite de Autorización Administrativa Previa

El objeto del presente proyecto es la definición de las características de la Instalación Fotovoltaica FV Mezquita Bensolar de 60,015 MWp de potencia pico y 49,544 MWn de potencia instalada, para la legalización ante los organismos correspondientes.

La energía generada en instalación fotovoltaica se conduce mediante una línea subterránea de media tensión (30 kV) desde las estaciones de potencia hasta la Subestación Elevadora FV Mezquita Bensolar donde se eleva la tensión a 220 kV. Desde la subestación elevadora se evacua la energía mediante una línea subterránea de alta tensión hasta la SET Seccionadora Mezquita. Dentro de la SET Seccionadora Mezquita, el objeto único y exclusivo de este proyecto es la posición de Benbros, la cual será detallada en secciones posteriores. El resto de la Subestación Seccionadora Mezquita, así como las demás instalaciones necesarias hasta la conexión con la SET Mezquita 220 kV (propiedad de Red Eléctrica de España), corresponden a otros proyectos independientes y, consecuentemente, a otros expedientes.

Desde la SET Seccionadora Mezquita se evacuará la energía para mediante una LAAT 220 kV enlace en servicio para evacuar finalmente en la SET Mezquita 220 kV, propiedad de Red Eléctrica de España.

La instalación fotovoltaica se proyecta en unas parcelas pertenecientes al municipio de Jarque de la Val, provincia de Teruel.

1.2. Potencia instalada

A continuación, se establecen las potencias del Proyecto tal y como establece el Real Decreto 1183/2020 y Real Decreto-Ley 23/2020.

1.2.1. Capacidad de acceso en el punto de conexión

Tal y como establece el Real Decreto-ley 23/2020 en su artículo 4, la Capacidad de acceso de la Planta Fotovoltaica FV Mezquita Bensolar conforme al permiso de acceso de conexión otorgado por Red Eléctrica de España es de 42,00 MW.

1.2.2. Potencia instalada

Según la disposición final tercera del Real Decreto 1183/2020, la potencia instalada se define como:

"En el caso de instalaciones fotovoltaicas, la potencia instalada será la menor de entre las dos siguientes:

- a) La suma de las potencias máximas unitarias de los módulos fotovoltaicos que configuran dicha instalación, medidas en condiciones estándar según la norma UNE correspondiente.
- b) La potencia máxima del inversor o, en su caso, la suma de las potencias de los inversores que configuran dicha instalación.

Por lo tanto, para la Instalación Fotovoltaica FV Mezquita Bensolar se obtienen los siguientes valores:

Número de módulos	85.736
Potencia unitaria cara delantera en STC	700 Wp
Potencia pico	60,015 MW
Número de inversores	11
Potencia unitaria del inversor (40°C)	4.504 kW
Potencia máxima de inversores	49,544 MW

Tabla 1. Potencia instalada

Según los valores recogidos en la tabla anterior, la Potencia Instalada de la Planta Fotovoltaica FV Mezquita Bensolar es de 49,544 MW.

Como se puede observar, la potencia instalada es superior a la capacidad de acceso, por lo tanto, la potencia activa generada por la instalación estará limitada mediante un sistema de control (Power Plant Controller) que garantice que la potencia inyectada a la red no supere la capacidad de acceso.

1.3. Identificación del titular

El titular del proyecto es la sociedad Benbros Solar, S.L., con C.I.F.: B-02751899 y con domicilio a efectos de notificaciones en la C/ Castelló, 128 5º izquierda, CP: 28006, Madrid, España.

1.4. Datos del proyectista

El presente proyecto básico ha sido redactado por:

- Proyectista: Manuel Cañas Mayordomo

- Titulación: Ingeniero Agrónomo

- Proyectista: Daniel Correro Cabrera

Titulación: Ingeniero Industrial

Empresa: Ingnova Enterprise S.L.

- Dirección: C/ Tomas de Aquino 14, Local en Córdoba (C.P.: 14004)

- CIF: B-56006984

2. Caracterización de la Zona

2.1. Situación

La Planta Solar Fotovoltaica FV Mezquita Bensolar se localiza en el término municipal de Jarque de la Val (Teruel), ubicada al norte del núcleo urbano de Jarque de la Val. El fin de la instalación es la generación de energía eléctrica e inyección a la red en el nudo de transporte SET Mezquita 220 kV.

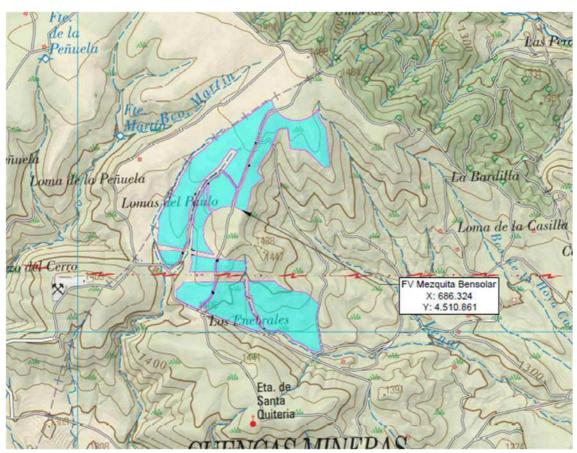


Ilustración 1. Situación

Las coordenadas del centro geométrico de la Planta son las siguientes:

Coordenadas UTM ETRS89 Huso 30		
Х	686.324	
Υ	4.510.861	

Tabla 2. Coordenadas del emplazamiento

Los recintos donde se implantará la instalación fotovoltaica pertenecen al término municipal de Jarque de la Val, provincia de Teruel.

Las parcelas catastrales en la que se ubicará la instalación fotovoltaica son las siguientes:

Municipio	Polígono	Parcela	Referencia catastral	Superficie(m2)
Jarque de la Val	517	3	44134B51700003	226.224
Jarque de la Val	517	1	44134B51700001	416.284
Jarque de la Val	517	2	44134B51700002	83.832
Jarque de la Val	517	4	44134B51700004	1.534.332
Jarque de la Val	517	5	44134B51700005	20.400

Tabla 3. Datos catastrales

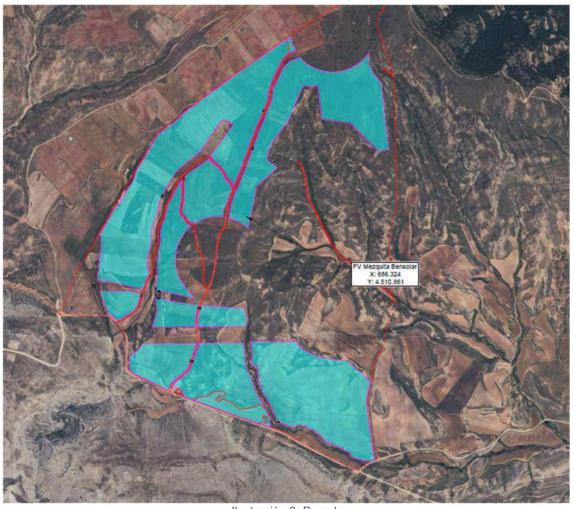


Ilustración 2. Parcela

Las coordenadas del vallado perimetral son las siguientes:

Coordenadas UTM (Huso 30)				
Recinto 1				
Punto X Y				
1	686.577	4.511.895		
2	686.602	4.511.825		

Coo	ordenadas UTM	(Huso 30)
3	686.465	4.511.586
4	686.248	4.511.494
5	686.299	4.511.470
	685.932	4.511.417
7	686.137	4.511.336
8	686.190	4.511.313
9	685.833	4.511.253
10	686.270	4.511.213
11	685.980	4.511.175
12	686.301	4.511.169
13	685.657	4.510.937
14	685.903	4.510.901
15	685.892	4.510.750
16	685.888	4.510.733
17	685.645	4.510.712
18	685.865	4.510.675
Coo	rdenadas UTM	(Huso 30)
	Recinto 2	2
Punto	X	Υ
19	686.954	4.511.816
20	686.622	4.511.795
21	686.536	4.511.735
22	687.016	4.511.669
23	686.636	4.511.655
24	686.708	4.511.654
25	686.492	4.511.639
26	686.727	4.511.494
27	686.861	4.511.477
00		
28	687.001	4.511.339
28	687.001 686.461	4.511.339 4.511.300
29	686.461	4.511.300
29 30	686.461 686.512	4.511.300 4.511.261
29 30 31 32	686.461 686.512 686.277 686.370	4.511.300 4.511.261 4.511.016 4.510.962
29 30 31 32	686.461 686.512 686.277	4.511.300 4.511.261 4.511.016 4.510.962 (Huso 30)
29 30 31 32 Coo	686.461 686.512 686.277 686.370 ordenadas UTM	4.511.300 4.511.261 4.511.016 4.510.962 (Huso 30)
29 30 31 32 Coo	686.461 686.512 686.277 686.370 ordenadas UTM Recinto 3	4.511.300 4.511.261 4.511.016 4.510.962 (Huso 30) 3
29 30 31 32 Coo Punto 33	686.461 686.512 686.277 686.370 ordenadas UTM Recinto 3 X 686.182	4.511.300 4.511.261 4.511.016 4.510.962 (Huso 30) 3 Y 4.511.306
29 30 31 32 Coo Punto 33 34	686.461 686.512 686.277 686.370 ordenadas UTM Recinto 3 X 686.182 686.245	4.511.300 4.511.261 4.511.016 4.510.962 (Huso 30) 3 Y 4.511.306 4.511.239
29 30 31 32 Coo Punto 33 34 35	686.461 686.512 686.277 686.370 ordenadas UTM Recinto 3 X 686.182 686.245 686.060	4.511.300 4.511.261 4.511.016 4.510.962 (Huso 30) 3 Y 4.511.306 4.511.239 4.511.212
29 30 31 32 Coo Punto 33 34	686.461 686.512 686.277 686.370 ordenadas UTM Recinto 3 X 686.182 686.245	4.511.300 4.511.261 4.511.016 4.510.962 (Huso 30) 3 Y 4.511.306 4.511.239

	Coordenadas UTM (Huso 30)					
38	686.054	4.511.036				
39	686.249	4.511.019				
40	686.077	4.511.006				
41	686.114	4.510.991				
Coo	rdenadas UTM	` '				
	Recinto 4					
Punto	X	Υ				
42	686.052	4.511.202				
43	686.051	4.511.145				
44	686.050	4.511.104				
45	685.984	4.511.081				
46	686.095	4.510.977				
47	685.946	4.510.946				
48	685.933	4.510.814				
49	685.923	4.510.667				
50	686.108	4.510.632				
51	686.103	4.510.629				
Coo	rdenadas UTM	(Huso 30)				
	Recinto 5	5				
Punto	Х	Υ				
52	685.801	4.510.664				
53	685.653	4.510.663				
54	685.856	4.510.648				
55	685.835	4.510.588				
56	685.696	4.510.553				
57	685.740	4.510.519				
Coordenadas UTM (Huso 30)						
	Recinto 6	6				
Punto	Х	Υ				
58	685.922	4.510.631				
59	686.135	4.510.596				
60	685.907	4.510.489				
61	686.120	4.510.490				
Coo	rdenadas UTM	(Huso 30)				
Recinto 7						
Punto	Х	Υ				
62	686.146	4.510.596				
63	686.351	4.510.582				
64	686.127	4.510.542				
65	686.364	4.510.534				
66	686.129	4.510.490				

Coordenadas UTM (Huso 30)					
67	686.358	4.510.492			
Coo	rdenadas UTM	(Huso 30)			
Recinto 8					
Punto	Х	Υ			
68	686.124	4.510.409			
69	685.859	4.510.406			
70	685.798	4.510.342			
71	686.077	4.510.282			
72	685.799	4.510.277			
73	685.985	4.510.182			
Coo	rdenadas UTM	(Huso 30)			
	Recinto 9				
Punto	X	Υ			
74	686.348	4.510.411			
75	686.134	4.510.409			
76	686.085	4.510.276			
77	686.386	4.510.248			
78	686.006	4.510.201			
79	686.061	4.510.151			
80	686.476	4.510.048			
81	686.478	4.510.003			
Coordenadas UTM (Huso 30)					
	Recinto 1				
Punto	X	Υ			
82	686.383	4.510.417			
83	686.602	4.510.417			
84	686.852	4.510.323			
85	686.387	4.510.301			
86	686.417	4.510.298			
87	686.964	4.510.216			
88	686.441	4.510.171			
89	686.513	4.510.030			
90	686.591	4.510.000			
91	686.657	4.509.999			
92	686.746	4.509.932			
93	686.862	4.509.881			
94	686.871	4.509.861			
95	686.982	4.509.845			
96	686.968	4.509.840			

Tabla 4. Coordenadas vallado perimetral

La superficie total de las parcelas es 228,11 Ha, cuya superficie ocupada por la instalación fotovoltaica mediante su cerramiento perimetral es de 102,16 Ha con una longitud de vallado de 15.776,05 m.

Las estaciones de potencia de la planta solar se conectarán a través de una red subterránea de media tensión en 30 kV con la SET Elevadora FV Mezquita Bensolar donde se elevará la tensión a 220 kV.

Posteriormente, desde la SET Elevadora FV Mezquita Bensolar saldrá una Línea subterránea de alta tensión en 220 kV hasta SET Seccionadora Mezquita desde donde se evacuará a la SET Mezquita 220 kV con el resto de promotores del nudo. Dentro de la SET Seccionadora Mezquita, el objeto único y exclusivo de este proyecto es la posición de Benbros, la cual será detallada en secciones posteriores. El resto de la Subestación Seccionadora Mezquita, así como las demás instalaciones necesarias hasta la conexión con la SET Mezquita 220 kV (propiedad de Red Eléctrica de España), corresponden a otros proyectos independientes y, consecuentemente, a otros expedientes.

En los Planos Nº 1: Situación y Nº 2: Emplazamiento se podrá observar con más detalle el emplazamiento de la instalación fotovoltaica.

2.2. Accesos a la planta

Los accesos a la Planta Solar se proyectan a través de caminos públicos existentes. Las coordenadas UTM ETRS89 (HUSO 30) de referencia de las puertas de acceso de la Planta Solar FV Mezquita Bensolar son las siguientes:

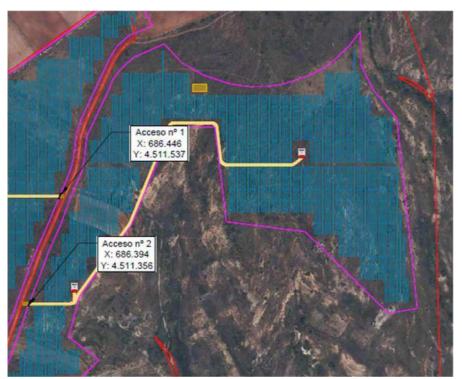

Coordenadas UTM (Huso 30)					
	Accesos				
	X				
1	686.446	4.511.537			
2	686.394	4.511.356			
3	686.062	4.511.208			
4	685.955	4.511.123			
5	685.925	4.510.673			
6	685.941	4.510.663			
7	685.854	4.510.643			
8	685.935	4.510.629			
9	686.130	4.510.582			
10	686.140	4.510.579			
11	686.093	4.510.322			
12	686.103	4.510.319			
13	686.517	4.510.029			

Tabla 5. Accesos a la planta solar

SEPARATA AL PROYECTO BÁSICO MODIFICADO DE INSTALACIÓN FOTOVOLTAICA "FV MEZQUITA BENSOLAR" E INFRAESTRUCTURAS DE EVACUACIÓN EN LOS TT.MM. DE JARQUE DE LA VAL, MEZQUITA DE JARQUE Y CUEVAS DE ALMUDÉN (TERUEL)

BENBROS

llustración 3. Accesos a la planta solar

Ilustración 4. Accesos a la planta solar

Ilustración 5. Accesos a la planta solar.

3. Descripción instalación solar

Las instalaciones fotovoltaicas de conexión a red eléctrica se componen de dos partes fundamentales, por un lado, se encuentra el generador fotovoltaico donde se recoge y se transforma la energía de la radiación solar en electricidad, mediante los módulos fotovoltaicos, y otra parte que se encarga de transformar la energía eléctrica de corriente continua a corriente alterna que se realiza en el inversor y en los transformadores, para su posterior inyección a la red.

La presente planta solar fotovoltaica está compuesta por 85.736 módulos fotovoltaicos bifaciales del modelo RSM132-8-700 BHDG de 700 Wp de Risen o similar, que forman un campo solar de una potencia pico de 60,015 MWp. Dichos módulos estarán distribuidos en 3.062 cadenas de 28 módulos en serie cada una, las cuales se agruparán en 3.062 trackers.

Estos módulos fotovoltaicos transforman la radiación solar en energía eléctrica, produciendo corriente continua, por lo que para transformar la corriente continua en corriente alterna se instalan inversores fotovoltaicos. En el presente proyecto se ha previsto el uso de once (11) inversores modelo Proteus PV4500 de Gamesa Electric o similar, los cuales dotan a la instalación de una potencia de inversores a 40 °C de 49,544 MW, siendo el ratio CC/CA de 1,21.

La energía generada en la estación de potencia será conducida por medio de una red de media tensión (MT) subterránea de 30 kV hasta las celdas de MT de la SET Elevadora FV Mezquita Bensolar, la cual se proyecta en la zona sur de la Planta. Posteriormente, la energía generada por la Planta Solar se evacuará a través de una LSAT de 220 kV, que finalizará en la SET Seccionadora Mezquita y de esta partirá una línea aérea de alta tensión en servicio hasta la SET Mezquita 220 kV, propiedad de REE.

El punto de medida de la energía generada por la instalación se encontrará en las celdas de MT (30 kV) de la SET Elevadora. La medida de la energía cumplirá con lo dispuesto en el RD1110/2007 por el que se aprueba el Reglamento unificado de Puntos de Medida del Sistema Eléctrico, referente a medida, seguridad y calidad industrial para permitir y garantizar la correcta medida de la energía eléctrica

3.1. Descripción instalación solar

A continuación, se presentan las características principales de la planta:

Elemento	Parámetro	Unidad	
	Fabricante y modelo	-	RSM-132-8-700BHDG
Módulo FV	Tecnología	-	Bi-facial
Wiodulo FV	Potencia	Wp	700
	Número de módulos	Qty	85.736
	Tipo	-	Seguidor Horizontal de 1 eje N-S
	Fabricante y modelo	-	PVHardware Monoline 1Vx28
Estructura Soporte	Configuración	-	1V
Сороно	Pendiente N-S tolerada	%	23,5
	Número de estructuras	Qty	3.062 de 1Vx28
	Tipo	-	Central
	Fabricante y modelo	-	Gamesa Electric PV4500
Inversor	Potencia AC a 40 °C	kW	4.504
	Potencia AC a 50 °C	kW	4.169
	Número de inversores	Qty	11
	Fabricante y modelo	-	Gamesa Electric Proteus 4500
Centro de Transformación	Potencia AC a 40°C	kVA	4.504 (1 inversor) / 9.008 (2 inversores)
	Número de centros de transformación	Qty	7
	Tª de diseño	°C	40
	Nº de módulos / string	Qty.	28
Parámetros de	Pitch	m	6,00
Diseño	N° de strings	Qty	3.062
	Potencia de acceso en el Punto de conexión	MW	49,544

Elemento	Parámetro	Unidad	
	Potencia Pico	MW	60,015
	Potencia Instalada	MW	42,00

Tabla 6. Características generales de la planta fotovoltaica

4. Componentes de la instalación fotovoltaica

4.1. Módulos fotovoltaicos

La instalación fotovoltaica se compone de 85.736 módulos fotovoltaicos bifaciales del modelo RSM-132-8-700 BHDG de 700 Wp de Risen o similar, que forman un campo solar de una potencia pico de 60,015 MWp. A continuación, se muestran las principales características de los módulos:

Módulos fotovoltaicos (RSM-132-8-700BHDG)	STC	NOCT
Potencia máxima (W)	700	534,50
Voltaje máximo (Vmp)	41,78	39,07
Corriente máximo (Imp)	16,77	13,68
Voltaje circuito abierto (Voc)	49,83	46,69
Corriente cortocircuito (Isc)	17,82 14,61	
Eficiencia STC (%)	22,50	
Temperatura operación (°C)	-40 °C / +85°C	
Voltaje máximo del sistema (V)	1500 V	
Capacidad máx. de fusible serie	35 A	
Coef. de temperatura de Pmax (%/°C)	-0,24	
Coef. de temperatura de Voc (%/°C)	-0,22	
Coef. de temperatura de lsc (%/°C)	0,047	

Tabla 7. Características módulo fotovoltaico

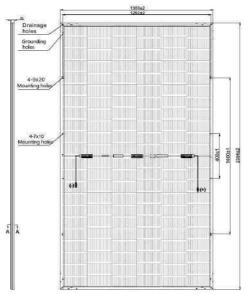
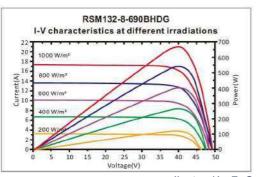



Ilustración 6. Módulo fotovoltaico

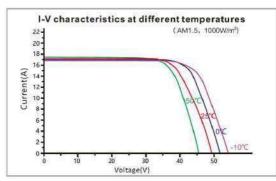


Ilustración 7. Curvas características

Todos los módulos deberán satisfacer las especificaciones UNE-EN 61215 para módulos de silicio cristalino, así como estar cualificados por algún laboratorio reconocido, acreditándolo mediante la presentación del certificado oficial correspondiente. Además, cumplirán con los requerimientos técnicos y de seguridad necesarios para su interconexión a la red de baja tensión (2006/95/CE), así como las directivas Comunitarias sobre seguridad eléctrica y compatibilidad electromagnéticas (2004/108/CE).

4.2. Inversor fotovoltaico

La corriente generada en los módulos fotovoltaicos es corriente continua, y tendrá que ser convertida a corriente alterna con las mismas características que la red de distribución de electricidad, para poder ser cedida a ella. Esto se consigue mediante los inversores de corriente.

Los inversores dispuestos en el proyecto son tipo central y estáticos, concretamente el modelo Proteus PV4500 de Gamesa Electric o similar. El número de inversores necesarios, teniendo en cuenta, la potencia de la planta y la potencia unitaria de cada inversor será de once (11) inversores a la cual se conectarán 3.062 strings de 28 módulos en serie cada uno, dotando a la instalación de una potencia instalada de 49.544 MW.

Los inversores cumplirán con los requerimientos técnicos y de seguridad necesarios para su interconexión a la red de baja tensión (2006/95/CE), así como las directivas Comunitarias sobre seguridad eléctrica y compatibilidad electromagnética (2004/108/CE).

Ilustración 8. Proteus PV4500

De forma general, las características de inversor empleado son las siguientes:

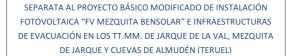

Inversor (Proteus PV4500)				
Valores de entrada CC				
Tensión máxima de entrada (V)	1.5	500		
Rango de tensión por MPP (V)	915	1.500		
Máxima Corriente CC (A)	2.5	500		
Máxima Corriente Cortocircuito CC (A)	9.0	000		
Valores de salida CA				
Potencia nominal a 50 °C (kVA/kW)	4.1	69		
Potencia máxima a 40 °C (kVA/kW)	4.5	504		
Tensión nominal de salida (V)	66	60		
Intensidad máxima de salida (A)	3.9	940		
Frecuencia nominal de red de CA (Hz)	50	/60		
Distorsión armónica total máxima	V	3%		
Eficiencia				
Eficiencia máxima	99,4	5 %		
Eficiencia europea	99,2	24 %		

Tabla 8. Características inversor fotovoltaico

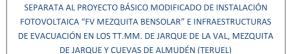
El inversor cumple con lo dispuesto en los estándares EN 61000-6-1, EN 61000-6-2, EN 61000-6-4, EN 61000-3-11, EN 61000-3-12, EN 62109-1, EN 62109-2, IEC62103, EN 50178, FCC Part 15, AS3100, así como con el P.O.12.3 de conexión a red.

Con el fin de evitar el efecto (PID), degradación inducida por potencial eléctrico de los módulos fotovoltaicos, el polo negativo CC del inversor se conectará a la red de tierras.

Los inversores de conexión a red disponen de un sistema de control que permite un funcionamiento completamente automatizado y presentan las siguientes características de funcionamiento:

Seguimiento del punto de máxima potencia (MPP).

Debido a las especiales características de producción de energía de los módulos fotovoltaicos, estos varían su punto de máxima potencia según la irradiación y la temperatura de funcionamiento de la célula. Por este motivo el inversor debe ser capaz de hacer trabajar al campo solar en el punto de máxima potencia, y contar con un rango de tensiones de entrada bastante amplio.


Características de la señal generada

La señal generada por el inversor está perfectamente sincronizada con la red respecto a frecuencia, tensión y fase a la que se encuentra conectado. Reducción de armónicos de señal de intensidad y tensión.

Protecciones

- Protección para la interconexión de máxima y mínima frecuencia: Si la frecuencia de la red está fuera de los límites de trabajo (49Hz-51Hz), el inversor interrumpe inmediatamente su funcionamiento pues esto indicaría que la red es inestable, o procede a operar en modo isla hasta que dicha frecuencia se encuentre dentro del rango admisible.
- O Protección para la interconexión de máxima o mínima tensión: Si la tensión de red se encuentra fuera de los límites de trabajo, el inversor interrumpe su funcionamiento, hasta que dicha tensión se encuentre dentro del rango admisible, siendo el proceso de conexión-desconexión de rearme automático (artículo 11.4, artículo 11.3 y artículo 11.7 a), RD1699/2011).
- Fallo en la red eléctrica o desconexión por la empresa distribuidora: En el caso de que se interrumpa el suministro en la red eléctrica, el inversor se encuentra en situación de cortocircuito, en este caso, el inversor se desconecta por completo y espera a que se restablezca la tensión en la red para reiniciar de nuevo su funcionamiento (artículo 8.2 y 11.6, RD1699/2011).
- Tensión del generador fotovoltaico baja: Es la situación en la que se encuentra durante la noche, o si se desconecta el generador solar. Por tanto, el inversor no puede funcionar.
- Intensidad del generador fotovoltaico insuficiente: El inversor detecta la tensión mínima de trabajo de los generadores fotovoltaicos a partir de un valor de radiación solar muy bajo, dando así la orden de funcionamiento o parada para el valor de intensidad mínimo de funcionamiento.
- El inversor incluye interruptor automático en la salida CA.
- Los inversores estarán conectados a tierra tal y como se exige en el reglamento de baja tensión. La toma de tierra es única y común para todos los elementos.

Los inversores serán provistos del software de aplicación para la configuración de los equipos y extracción de datos, otorgando plenos derechos al administrador e incluyendo el acceso a sus parámetros funcionales.

Además, los inversores deben ir acompañados de planos de cableado, manuales de instalación, operación y mantenimiento, incluyendo lista de parámetros, valores, tolerancias de alarma / advertencia y funcionamiento, en español.

4.3. Estructura soporte (seguidores)

Los módulos fotovoltaicos se instalarán sobre una estructura de soporte que permita un buen anclaje al terreno y proporcione la inclinación idónea de los mismos en cada momento, realizando un seguimiento solar este – oeste, con eje norte – sur.

Además de resistir con el peso de los módulos fotovoltaicos, esta estructura de soporte debe resistir las sobrecargas de viento y nieve, tal y como establece el código técnico de la edificación.

El seguidor solar consigue incrementar la productividad de los módulos con respecto a un sistema fijo, en más de un 20 %, lo que permite maximizar la instalación con el mismo número de módulos fotovoltaicos.

Cada seguidor solar cuenta con un autómata PLC independiente de los demás y programable, mediante el cual el seguidor realiza el seguimiento solar astronómico, actúa en función del clima exterior y permite una operación a distancia.

Los seguidores se conectan a una estación meteorológica que con la ayuda de autómata PLC, se orienta ante las diversas situaciones climatológicas. La programación del autómata permite actuar al seguidor ante nieve, tormenta eléctrica, niebla, oscuridad y viento.

Estos seguidores funcionan mediante un accionamiento rotativo electromecánico irreversible con motor reductor de alta eficiencia de 155 W de potencia.

La estructura de soporte empleada permitirá las dilataciones térmicas, sin transmitir cargas que puedan afectar a la integridad de los módulos, tal y como establece el fabricante en sus especificaciones.

La estructura de soporte escogida para la presente instalación fotovoltaica es el modelo Monoline de la marca PVHardware o similar, y se trata de un seguidor a un eje este – oeste, con eje norte – sur.

Esta estructura de soporte se compone de dos ejes principales simétricos con respecto a una unidad de giro central, alineados en dirección norte – sur. Encima de las vigas principales se instalan los módulos fotovoltaicos. La estructura esta soportada por una serie de pilares formados por perfiles tipo HEB y C hincados 1,50 metros en el terreno.

Cada seguidor es independiente entre sí desde el punto de vista estructural, y tienen la capacidad de adaptarse a pendientes de hasta 23,5% hacia el eje norte – sur.

La estructura se protegerá superficialmente contra la acción de los agentes ambientales, mediante galvanización en caliente, que garantice la integridad de la estructura durante la vida útil de la instalación fotovoltaica.

El dimensionamiento de los pilares irá precedido de un estudio geotécnico del terreno, que limitará la profundidad necesaria de hincado y su dimensión óptima, de forma que se aprovechen los materiales de forma óptima.

Ilustración 9. Seguidor solar 1V

Los datos técnicos del seguidor son los siguientes:

Características del seguidor			
Fabricante	PVHardware o similar		
Seguimiento	Horizontal 1 eje N-S		
Ángulo de seguimiento (°)	±60°		
Disposición de módulos	1V		
Configuración	1Vx28		
Filas por seguidor	Monofila		
Pendiente admisible N-S (%)	Hasta 23,5 %		
Pendiente admisible E-O (%)	Ilimitada		
Opciones Cimentación	Hincado directo / Pre-drilling + hincado / Micropilote/ Predrilling + compactado + hincado		
Algoritmo de Seguimiento	Astronómico		
Back-tracking	Sí		
Comunicación	Cableado RS485/RS-422/Ethernet/wifi		
Garantías estándar	Estructura 10 años Componentes comerciales 2 años		

Tabla 9. Datos técnicos estructura soporte

4.4. Estación de potencia tipo skid

Una vez que los inversores fotovoltaicos han transformado la energía eléctrica a corriente alterna, se dirige al transformador de potencia para elevar la tensión de la energía generada. El inversor y transformador se instalan en una estación de potencia tipo Skid. Para el presente proyecto se ha optado por la Estaciones de Potencia modelo *Proteus PV Station PV4500* del fabricante Gamesa Electric o similar.

Se prevé once (11) inversores alojados en siete (7) estaciones de potencia. Se instalarán 4 estaciones de potencia con un transformador de 9.008 kVA (40°C) y 3 estaciones de potencia con un transformador de 4.504 kVA (40°C), así como las celdas

de protección asociadas, y la interconexión entre todos los elementos. La Cabina de transformación se ubicará con preferencia en una posición centrada respecto al generador fotovoltaico al que está conectado, respetando las distancias necesarias para evitar sombras, y accesible a través de un camino transitable por vehículos de carga.

La estación de potencia es una plataforma compacta y resistente con todos los equipos de media tensión integrados. Incluye un transformador outdoor de media tensión, celdas de protección y desconexión, cubas de aceite y filtros. El transformador de potencia elevará la energía procedente del inversor de 660 V a 30 kV.

El centro de transformación está compuesto por tres bloques que comparten cimentación calculada en función de la carga de los equipos. Los bloques extremos agrupan al inversor con su correspondiente caja de entrada en baja tensión y el transformador de potencia asociado al inversor. En el bloque central se encuentran las celdas de media tensión, las cajas de baja tensión de servicios auxiliares y el transformador de servicios auxiliares de 10 kVA.

A continuación, se muestra una imagen de la estación de potencia y su esquema unifilar:

Ilustración 10. Estación de Potencia Proteus PV Stations

Cada una de las cabinas de transformación tipo incluirá al menos los siguientes componentes:

- Transformador de BT/MT
- Celdas de MT
- Transformador de Servicios auxiliares
- Cuadro de servicios auxiliares
- UPS (sistema de alimentación ininterrumpida)
- Armario de comunicaciones y control
- Cuadro de conexiones AC proveniente de los inversores
- Embarrado de tierras: el suministrador debe instalar un embarrado de tierras para conectar todas las tierras de protección. Las tierras del equipo suministrado deben ser conectadas e identificadas al embarrado.
- Sistema para detección de humo

- Sistema de iluminación interna/externa
- Sistema de ventilación

5. Descripción de la línea de interconexión interna

5.1. Información General

Como parte de las infraestructuras eléctricas de la Planta Solar, se dispondrá de una línea subterránea de media tensión en 30 kV que conecta las diferentes Estaciones de Potencia con la SET Elevadora del parque.

A continuación, se describe la información general de la línea de evacuación:

Línea de interconexión			
Denominación de línea	LSMT 30 kV		
Tipo de línea	Subterránea		
Nivel de Tensión (kV)	30		
Categoría	Tercera		
Nudo del extremo de la red	SET Elevadora FV Mezquita Bensolar		
Nudo del extremo de generación	Estaciones de Potencia		

Tabla 10. Información línea de interconexión

La configuración de la red interna de media tensión se resume en la siguiente tabla:

Línea MT	Desde	Hasta	Material	S (kVA)	V (V)	Longitud (m)
1	SKID 1	SKID 2	AL/XLPE	4.504	30.000	618,37
2	SKID 2	SET	AL/XLPE	9.008	30.000	1.439,94
3	SKID 3	SKID 4	AL/XLPE	9.008	30.000	896,82
4	SKID 4	SET	AL/XLPE	18.016	30.000	714,71
5	SKID 5	SET	AL/XLPE	4.504	30.000	399,12
6	SKID 7	SKID6	AL/XLPE	9.008	30.000	556,45
7	SKID 6	SET	AL/XLPE	18.016	30.000	962,64

Tabla 11. Configuración líneas de Media Tensión

5.2. Trazado

El conjunto de parcelas afectadas por el trazado muestra en la siguiente tabla:

Municipio	Polígono	Parcela	Referencia catastral	Superficie(m2)
Jarque de la Val	517	3	44134B51700003	226.224
Jarque de la Val	517	1	44134B51700001	416.284
Jarque de la Val	517	2	44134B51700002	83.832
Jarque de la Val	517	4	44134B51700004	1.534.332
Jarque de la Val	517	5	44134B51700005	20.400
Jarque de la Val	517	9051	44134B51709051	416.284

Tabla 12. Parcelas afectadas líneas interconexión

5.3. Características de la línea subterránea de media tensión

Las características de la línea subterránea se recogen en la siguiente tabla:

Características de la línea subterránea			
Sistema	Corriente alterna trifásica		
Tipo de línea	Subterránea		
Tensión nominal de la red (kV)	30		
Tensión más elevada de la red (kV)	36		
Nº de circuitos	1		
Nº conductores por fase	1		
Tipo conductor	RHZ1 18/30kV – 240 mm ²		

Tabla 13. Características de la línea subterránea

5.3.1. Características del conductor

El conductor a utilizar será del tipo RHZ1 18/30 kV Top Cable o similar, con las siguientes características:

Características Conductor			
Tipo Constructivo	Unipolar		
Conductor	Aluminio, semirígido clase 2 según UNE- EN 60228		
Aislamiento	Polietileno Reticulado, XLPE		
Nivel de Aislamiento Uo/U (Um)	18/30 kV		
Semiconductora Externa	Capa extrusionada de material conductor separable en frío		
Pantalla Metálica	Cinta longitudinal de aluminio termosoldada y adherida a la cubierta		
Temperatura Máx.Admisible en el Conductor en Servicio Permanente	90°C		
Temperatura Máx.Admisible en el Conductor en Régimen De Cc	250°C		
Sección	300 mm ²		
Peso aproximado	2.759 kg/km		
Diámetro nominal aislamiento	37,7 mm		
Diámetro nominal exterior	52,80 mm		

Características Conductor			
Resistencia eléctrica a 20 °C 0,119 Ω/km			
Intensidad máxima admisible	390 A		
directamente enterrado	330 A		
Radio de curvatura	0,792 m		

Tabla 14. Características del conductor

6. <u>SET elevadora FV Mezquita Bensolar 220/30 kV + Entronque Aéreosubterráneo</u>

6.1. Situación

La SET Elevadora FV Mezquita Bensolar se ubica en el polígono 517 – parcela 1 del término municipal de Jarque de la Val (Teruel), ubicada a 2,8 km al norte del núcleo de población de Jarque de la Val y su fin es la transformación y evacuación de la energía generada en la planta solar fotovoltaica FV Mezquita Bensolar.

El recinto donde se implantará la Subestación pertenece al término municipal de Jarque de la Val y se accede mediante un camino público.

Las coordenadas UTM – Huso 30 donde se localizará la Subestación ELEVADORA son la siguientes:

Coordenadas UTM Huso 30		
X 685.556		
Y	4.510.632	

Tabla 15. Coordenadas SET Elevadora

Los datos de la parcela catastral en la que se ubicará la Subestación Elevadora son los siguientes:

Municipio	Polígono	Parcela	Referencia catastral	Superficie(m2)
Jarque de la Val	517	1	44134B51700001	416.284

Tabla 16. Datos catastrales

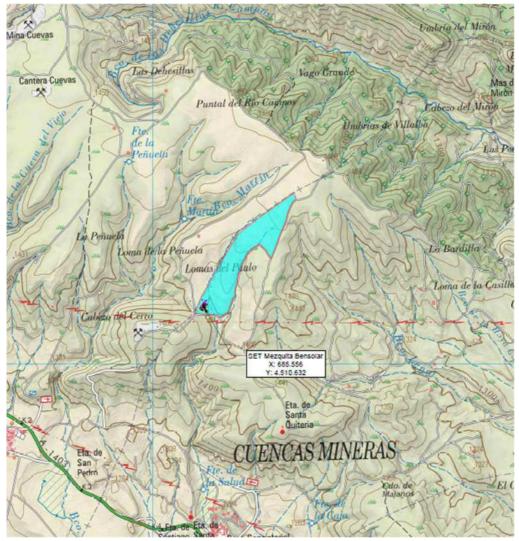


Ilustración 11. Situación SET Elevadora

La superficie catastral total de la parcela es 416.284,00 m², cuya superficie ocupada por la Subestación es de 4.328,85 m².

Desde la posición de línea de la SET Elevadora FV Mezquita Bensolar partirá una línea subterránea de alta tensión a 220 kV, con una longitud aproximada de 7.389,72 m, hasta la SET Seccionadora Mezquita y de esta partirá una línea aérea de alta tensión en servicio hasta la SET Mezquita 220 kV, propiedad de REE.

En los planos n° 2.1 Situación y n° 2.2 Emplazamiento, se puede observar con más detalle el emplazamiento de la SET Elevadora.

6.2. Acceso

El acceso a la SET Elevadora se realiza por el sur de la parcela, accediendo a través de un camino público (Polígono 517 – Parcela 9051).

El acceso al recinto de la SET se producirá a través de una puerta metálica situada en su lado sur-oeste tal y como se aprecia en la siguiente figura.

Ilustración 12. Acceso SET

Las coordenadas UTM – Huso 30 donde se localizará el acceso de la Subestación Elevadora son la siguientes:

Coordenadas UTM Huso 30		
X 685.556		
Υ	4.510.632	

Tabla 17. Coordenadas acceso SET

Las coordenadas de los vértices de la SET FV Mezquita Bensolar 30/220 kV son las siguientes:

Coordenadas UTM (Huso 30)				
SET				
Punto X Y				
1	685.513	4.510.605		
2	685.557	4.510.682		
3	3 685.599 4.510.658			
4	4 685.556 4.510.581			

Tabla 18. Coordenadas vértices SET FV Mezquita Bensolar.

6.3. Entronque aéreo-subterráneo

Se realizará el paso aéreo-subterráneo en el apoyo con las siguientes coordenadas:

Coordenadas UTM (Huso 30)				
Punto X Y				
Entronque aéreo- subterráneo	685.540	4.510.702		

Tabla 19. Coordenadas entronque aéreo-subterráneo

6.4. Descripción de las instalaciones

6.4.1. Datos generales

Las instalaciones consistirán en una subestación elevadora tipo AIS en 220 kV y cabina blindadas en 30 kV, con el fin de elevar e inyectar en la red la energía generada por la instalación FV Mezquita Bensolar.

La subestación constará de los siguientes elementos principales:

- Dos posiciones de línea de evacuación en 220 kV totalmente equipadas para tal propósito (una de salida y otra de entrada de reserva).
- Una posición de transformación de 55 MVA (ONAN/ONAF) y relación 220/30 kV de intemperie, aislado en baño de aceite mineral con sus correspondientes posiciones de protección para FV Mezquita Bensolar.
- Se equiparán y montarán celdas de 30 kV compuesto por: celdas de transformador, celdas de línea y celdas de SSAA.
- Se completarán las instalaciones con los aparatos de medida, mando, control y dispositivos de protección y seguridad correspondientes.
- Transformador de servicios auxiliares de 100 kVA

En la siguiente tabla se recogen las características generales de la Subestación Elevadora:

Características generales de la Subestación			
Nombre SET Elevadora FV Mezquita Bensolar			
Tipo de subestación	elevadora		
Tipo de acometida	Aérea		
Niveles de Tensión (kV)	220/30		
Área ocupación subestación (m²)	2.508,00		

Características generales de la Subestación				
Tipo de Edificio de Control	Tipo de Edificio de Control Construcción in situ			
	lluminación Exterior			
	Parking			
	Aparellaje Alta Tensión Intemperie			
	Celdas Media Tensión Tipo GIS			
	Previsión para Banco de Cond	ensadores		
	Transformador de SS.A	\ A.		
	Generador Diésel			
	Vallado perimetral			
Equipos e Instalaciones de la Subestación	Control de accesos			
	Sistema de Segurida	d		
	Sistema de Protección contra	Incendios		
	Cuadros de SS.AA.			
	Sistema de Control y Comunicaciones			
	Cuadro de CCTV			
	Cuadro de Iluminación			
	Aire acondicionado			
Designate with the tempital 200 IV	Posición de transformador	1		
Posiciones nivel de tensión 220 kV	Posición de salida	1		
Pasisianas nival da tansián 220 M/	Posición de transformador	1		
Posiciones nivel de tensión 220 kV	Posición de entrada	1		
Posiciones nivel de tensión 30 kV	Posición de transformador	1		
Fosiciones nivei de tension 30 KV	Posición de celdas de MT	4		
	Acometida	1		
Posiciones embarrado Media Tensión	Salida de línea	1		
Posiciones empartado iviedia Tension	Salida de SSAA	1		
	Medida tensión barras	1		

Tabla 20. Características generales SET Elevadora

El aparellaje estará soportado mediante estructuras metálicas de acero galvanizado en caliente, anclada sobre cimentaciones monolíticas de realizadas en hormigón.

El transformador de potencia que dispone la subestación se instalará sobre bancada provista de carriles o vías para permitir su desplazamiento; cercano a su base, se dispondrá de un foso para la recogida de aceite estanco, según el RD 337/2014.

El parque de intemperie se proyecta mediante una red de canales subterráneas prefabricados de hormigón, reforzada en pasos bajo vial, para la conducción interna del cableado hasta el edifico de control.

A continuación, se muestra la implantación de la subestación:

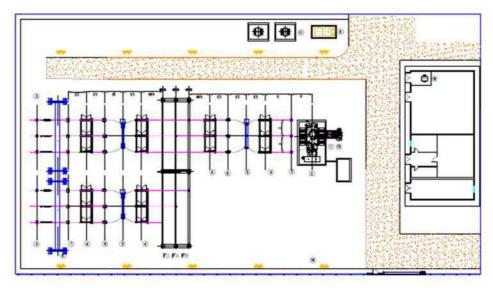
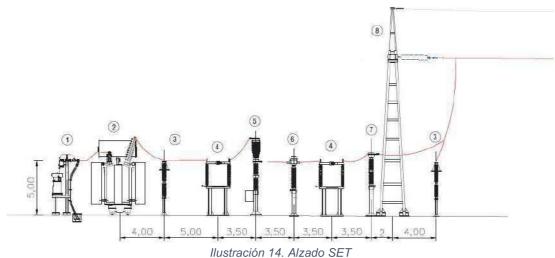



Ilustración 13. Planta SET

7. LSAT 220 kV SET elevadora FV Mezquita Bensolar 220/30 kV - SET Seccionadora Mezquita

La energía generada en el parque fotovoltaico FV Mezquita Bensolar se pretende evacuar en la SET Seccionadora Mezquita y posteriormente en la SET Mezquita 220 kV, por lo que se proyectan sus infraestructuras de evacuación. Se dispondrá una línea subterránea de evacuación que permita conectar la SET Elevadora FV Mezquita Bensolar con la SET Seccionadora Mezquita. Dentro de la SET Seccionadora Mezquita,

el objeto único y exclusivo de este proyecto es la posición de Benbros, la cual será detallada en secciones posteriores. El resto de la Subestación Seccionadora Mezquita, así como las demás instalaciones necesarias hasta la conexión con la SET Mezquita 220 kV (propiedad de Red Eléctrica de España), corresponden a otros proyectos independientes y, consecuentemente, a otros expedientes.

7.1. Situación

La línea de evacuación se proyecta en los términos municipales de Jarque de la Val, Cuevas de Almudén y Mezquita de Jarque, provincia de Teruel.

La línea partirá de la parcela 1 del polígono 517 en el término municipal de Jarque de la Val y terminará su recorrido en la SET Seccionadora Mezquita, parcela 34 del polígono 536, término municipal Mezquita de Jarque. La línea discurrirá a lo largo de un recorrido de 7.389,72 m, en tramo subterráneo.

Se reflejan a continuación las coordenadas del punto de inicio y final del trazado de la Línea Subterránea de evacuación expresadas en el sistema UTM – DATUM ETRS89 HUSO 30.

Coordenadas de la Línea de Evacuación	Inicio de Línea	Fin de Línea
Abscisa (X)	685.540	681.240
Norte (Y)	4.510.702	4.511.029

Tabla 21. Coordenadas LSAT 220 kV

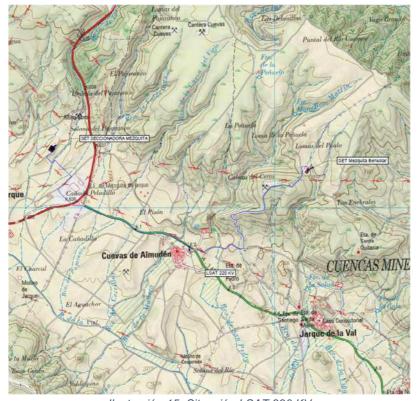


Ilustración 15. Situación LSAT 220 KV

La línea discurre enteramente por Zona C según las prescripciones de la ITC-LAT 07 del Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de Alta Tensión y sus Instrucciones Técnicas Complementarias (RD 223/2008).

7.2. Trazado

El trazado discurre por los términos municipales de Jarque de la Val, Cuevas de Almudén y Mezquita de Jarque, en la provincia de Teruel. Parte desde el apoyo compartido hasta la SET Seccionadora Mezquita.

A continuación, se indican las parcelas catastrales afectadas en cada término municipal por el paso de la Línea de evacuación.

Municipio	Polígono	Parcela	Referencia catastral	Superficie(m2)
Jarque de la Val	517	1	44134B51700001	416.284
Cuevas de Almudén	532	2	44095B53200002	396.096
Cuevas de Almudén	532	9011	44095B53209011	27.580
Jarque de la Val	518	9006	44134B51809006	2.267
Jarque de la Val	518	1	44134B51800001	27.827
Cuevas de Almudén	531	1	44095B53100001	766.666
Cuevas de Almudén	531	9033	44095B53109033	35.686
Cuevas de Almudén	531	20003	44095B53120003	304.709
Cuevas de Almudén	531	10003	44095B53110003	15.576
Cuevas de Almudén	531	7	44095B53100007	34.999
Cuevas de Almudén	531	20009	44095B53120009	37.373
Cuevas de Almudén	531	10009	44095B53110009	10.906
Cuevas de Almudén	531	9002	44095B53109002	9.971
Cuevas de Almudén	531	15	44095B53100015	65.729
Cuevas de Almudén	534	9046	44095B53409046	34.260
Cuevas de Almudén	529	9092	44095B52909092	2.248
Cuevas de Almudén	529	5	44095B52900005	2.908
Cuevas de Almudén	529	9091	44095B52909091	120
Cuevas de Almudén	529	4	44095B52900004	4.312
Cuevas de Almudén	529	3	44095B52900003	17.689
Cuevas de Almudén	529	9078	44095B52909078	286
Cuevas de Almudén	529	5127	44095B52905127	1.264
Cuevas de Almudén	529	9077	44095B52909077	314
Cuevas de Almudén	529	5002	44095B52905002	73
Cuevas de Almudén	529	5001	44095B52905001	28
Cuevas de Almudén	529	9089	44095B52909089	802
Cuevas de Almudén	529	2	44095B52900002	13.781
Cuevas de Almudén	529	1	44095B52900001	10.651
Cuevas de Almudén	534	9025	44095B53409025	30.294

Municipio	Polígono	Parcela	Referencia catastral	Superficie(m2)
Cuevas de Almudén	529	9047	44095B52909047	2.715
Cuevas de Almudén	529	9	44095B52900009	37.210
Cuevas de Almudén	529	9048	44095B52909048	54.750
Cuevas de Almudén	528	28	44095B52800028	180.982
Cuevas de Almudén	528	29	44095B52800029	23.840
Cuevas de Almudén	528	9050	44095B52809050	3.808
Cuevas de Almudén	528	36	44095B52800036	26.824
Cuevas de Almudén	528	9043	44095B52809043	7.870
Cuevas de Almudén	528	37	44095B52800037	71.865
Cuevas de Almudén	528	2	44095B52800002	33.855
Cuevas de Almudén	528	9042	44095B52809042	3.014
Cuevas de Almudén	528	20001	44095B52820001	22.570
Cuevas de Almudén	535	9096	44095B53509096	17.499
Mezquita de Jarque	554	10027	44155B55410027	2.450
Mezquita de Jarque	554	9129	44155B55409129	1.573
Mezquita de Jarque	554	20027	44155B55420027	6.621
Mezquita de Jarque	554	9001	44155B55409001	36.140
Mezquita de Jarque	536	9001	44155B53609001	44.671
Mezquita de Jarque	536	55	44155B53600055	190.680
Mezquita de Jarque	536	9133	44155B53609133	3.405
Mezquita de Jarque	536	43	44155B53600043	70.304
Mezquita de Jarque	536	45	44155B53600045	55.473
Mezquita de Jarque	536	46	44155B53600046	79.708
Mezquita de Jarque	536	9058	44155B53609058	22.081
Mezquita de Jarque	536	38	44155B53600038	3.592
Mezquita de Jarque	536	9032	44155B53609032	48.965
Mezquita de Jarque	536	35	44155B53600035	46.292
Mezquita de Jarque	536	34	44155B53600034	47.951

Tabla 22. Parcelas catastrales LSAT

7.3. Características de la línea subterránea de media tensión

Las características de la línea subterránea se recogen en la siguiente tabla:

Características de la línea subterránea			
Sistema	Corriente alterna trifásica		
Tipo de línea	Subterránea		
Inicio Tramo	SET Mezquita Bensolar		
Fin Tramo	SET Seccionadora Mezquita		
Longitud tramo (m)	7.389,72		
Tensión nominal de la red (kV)	220		
Tensión más elevada de la red (kV)	245		
Nº de circuitos	1		

Características de la línea subterránea			
N° conductores por fase 1			
Tipo conductor	RHZ1+2OL-127/220 kV 1x1000		
Tipo conductor	KAI+H250		

Tabla 23. Características de la línea subterránea

7.3.1. Características del conductor

El conductor de la línea subterránea será RHZ1+2OL-127/220 kV 1x1000 KAl+H250. Las características del conductor se adjuntan se encuentra en el anejo de fichas técnicas:

Características de la línea subterránea			
Sistema	Corriente alterna trifásica		
Frecuencia	50 Hz		
Tipo de línea	Subterránea		
Longitud total	7.389,72		
Tensión nominal de la red (kV)	220		
Tensión más elevada de la red (kV)	245		
Nº de circuitos	1		
Nº conductores por fase	1		
Conexión de pantallas	Cross Bonding		
Temperatura máxima conductor (°C)	90		
Intensidad máxima (A)	801		
Potencia máxima por circuito (MVA)	305		
Tipo conductor	RHZ1-2OL AL 127/220 kV – 1000 mm ²		

Tabla 24. Características del conductor

8. SET Seccionadora Mezquita

8.1. Situación

La SET Seccionadora Mezquita se ubica en el polígono 536 – parcela 34 del término municipal de Mezquita de Jarque (Teruel), ubicada a 2 km al noreste del núcleo de población de Mezquita de Jarque y su fin es la evacuación de la energía generada de la planta fotovoltaica FV Mezquita Bensolar.

El recinto donde se implantará la SET Seccionadora pertenece al término municipal de Mezquita de Jarque y se accede mediante un camino público.

Las coordenadas UTM – Huso 30 donde se localizará la SET Seccionadora son la siguientes:

Coordenadas UTM Huso 30		
X 681.206		
Υ	4.511.005	

Tabla 25. Coordenadas SET

Los datos de la parcela catastral en la que se ubicará la SET Seccionadora son los siguientes:

Municipio	Polígono	Parcela	Referencia catastral	Superficie(m2)
Mezquita de Jarque	536	34	44155B53600034	47.951

Tabla 26. Datos catastrales

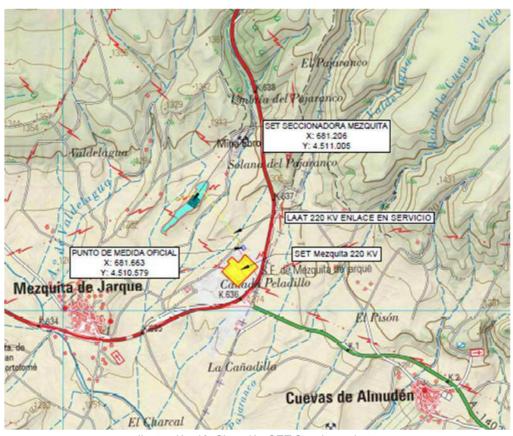


Ilustración 16. Situación SET Seccionamiento

La superficie catastral total de la parcela es 47.951,00 m², cuya superficie ocupada por la SET Seccionamiento es de 6.541,60 m².

Desde la posición de línea de la SET Seccionadora Mezquita partirá una línea aérea de alta tensión a 220 kV en servicio, hasta la SET Mezquita 220 kV, propiedad de REE. Dentro de la SET Seccionadora Mezquita, el objeto único y exclusivo de este proyecto es la posición de Benbros, la cual será detallada en secciones posteriores. El resto de la Subestación Seccionadora Mezquita, así como las demás instalaciones necesarias hasta la conexión con la SET Mezquita 220 kV (propiedad de Red Eléctrica

de España), corresponden a otros proyectos independientes y, consecuentemente, a otros expedientes.

En los planos n° 4.1 Situación y n° 4.2 Emplazamiento, se puede observar con más detalle el emplazamiento de la SET Elevadora.

8.2. Acceso

El acceso a la SET Seccionamiento se realiza por el nor-oeste de la parcela, accediendo a través de un camino público.

El acceso al recinto de la SET se producirá a través de una puerta metálica situada en su lado noroeste tal y como se aprecia en la siguiente figura.

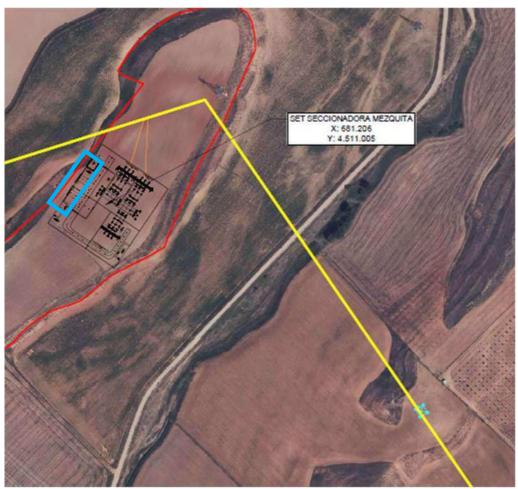


Ilustración 17. Acceso SET

Las coordenadas UTM – Huso 30 donde se localizará el acceso de la SET Seccionamiento son la siguientes:

Coordenadas UTM Huso 30	
X	681.175
Υ	4.511.025

Tabla 27. Coordenadas acceso SET Seccionamiento

8.3. Descripción de las instalaciones

8.3.1. Datos generales

Las instalaciones consistirán en una subestación seccionadora tipo AIS en 220 kV, con el fin de elevar e inyectar en la red la energía generada por las instalaciones de los promotores del nudo.

La subestación constará de los siguientes elementos principales:

- Una posición de línea en 220 kV totalmente equipada para tal propósito para FV Mezquita Bensolar.
- Una posición de reserva en 220 kV totalmente equipada para futuras incorporaciones.
- Una posición de línea en 220 kV totalmente equipada para tal propósito para Enel.
- Una posición de línea en 220 kV totalmente equipada para tal propósito para conectar con la SET Mezquita 220 kV, propiedad de REE.
- Una posición de barras simple en 220 kV totalmente equipada para tal propósito.
- Se completarán las instalaciones con los aparatos de medida, mando, control y dispositivos de protección y seguridad correspondientes.
- Transformador de servicios auxiliares de 100 kVA

En la siguiente tabla se recogen las características generales de la Subestación Colectora:

Características generales de la Subestación	
Nombre SET	Subestación Seccionadora Mezquita
Tipo de subestación	Colectora
Tipo de acometida	Aérea
Niveles de Tensión (kV)	220
Área ocupación subestación (m²)	6.541,60
Tipo de Edificio de Control	Construcción in situ
Equipos e Instalaciones de la Subestación	Iluminación Exterior
	Parking
	Aparellaje Alta Tensión Intemperie
	Transformador de SS.AA.
	Generador Diésel
	Vallado perimetral
	Control de accesos
	Sistema de Seguridad

Características generales de la Subestación		
	Sistema de Protección contra	
	Incendios	
	Cuadros de SS.AA.	
	Sistema de Control y	
	Comunicaciones	
	Cuadro de CCTV	
	Cuadro de Iluminación Aire acondicionado	
Posiciones nivel de tensión 220 kV	Posición de salida	1
	Posición de entrada	3

Tabla 28. Características generales SET Seccionadora Mezquita

El aparellaje estará soportado mediante estructuras metálicas de acero galvanizado en caliente, anclada sobre cimentaciones monolíticas de realizadas en hormigón.

El parque de intemperie se proyecta mediante una red de canales subterráneas prefabricados de hormigón, reforzada en pasos bajo vial, para la conducción interna del cableado hasta el edifico de control.

A continuación, se muestra la implantación de la subestación:

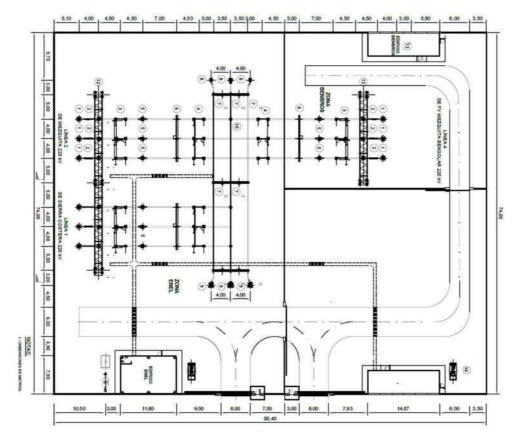


Ilustración 18. Planta SET Seccionadora Mezquita

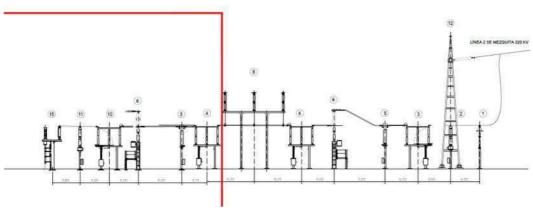


Ilustración 19. Alzado SET Seccionamiento

9. Punto de medida oficial

El punto de medida principal de la instalación será independiente de la red de transporte y estará separado físicamente de la misma ubicándose en un apoyo de la línea no transporte perteneciente a la instalación de enlace, encontrándose este apoyo a una distancia inferior a 500 metros de la SET de REE.

Se instalará un punto de medida principal y un punto de medida frontera, coincidiendo con el punto frontera de la instalación.

En el centro de medida se instalarán los equipos necesarios para disponer de medida principal y en la SET PSFV Mezquita Bensolar se instalarán los equipos necesarios para disponer de Medida Comprobante. De esta forma, la configuración del sistema será Medida Principal + Comprobante.

Coordenadas UTM (Huso 30)		
Punto de medida principal (oficial)		
	X	Y
	681.663	4.510.579

Tabla 29. Coordenadas punto de medida oficial.

El punto de medida oficial estará compuesto por:

Transformadores de intensidad:

Se instalará un transformador de intensidad por fase.

Características generales:

Servicio	Exterior

Tensión más elevada en red225 kV

SEPARATA AL PROYECTO BÁSICO MODIFICADO DE INSTALACIÓN FOTOVOLTAICA "FV MEZQUITA BENSOLAR" E INFRAESTRUCTURAS DE EVACUACIÓN EN LOS TT.MM. DE JARQUE DE LA VAL, MEZQUITA DE JARQUE Y CUEVAS DE ALMUDÉN (TERUEL)

Normas	. IEC-61869-2
Frecuencia	.50 Hz
Relación de Transf	.300-150/5-5 A
Potencias y precisiones	.10 VA cl 0,2s

Transformadores de tensión:

Se instalará un transformador de tensión por fase.

Características generales Posición Línea:

Servicio	Exterior
Tensión más elevada de red	225 kV
Normas	IEC 61869-3
Frecuencia	50 Hz
Relaciones de transformación	220/ √3 : 0,110/ √3
	220/ √3 : 0,110/ √3
Potencias y clases de precisión	20VA cl 0,2
Potencias y clases de precisión	20VA cl 0,2

10. Resumen de presupuesto

El total del Presupuesto asciende a la cantidad de TREINTA Y OCHO MILLONES CUATROCIENTOS OCHENTA Y SEIS MIL OCHOCIENTOS OCHENTA Y SÉIS EUROS CON VEINTIOCHO CÉNTIMOS, I.V.A. incluido.

Capítulo	Importe
Planta Solar Fotovoltaica	22.053.501,33€
SET Elevadora FV Mezquita Bensolar 220/30 kV	2.998.389,20€
LSAT 220 kV	476.220,00 €
SET Seccionadora Mezquita	1.200.750,00€
Total Presupuesto de Ejecución Material	26.728.860,53 €
Gastos generales (13%)	3.474.751,87€
Beneficio industrial (6%)	1.603.731,63€
IVA (21%)	6.679.542,25€
Total Presupuesto Ejecución	38.486.886,28 €

11. Petición a la administración competente

Con la presente Memoria y demás documentos que se adjuntan y componen esta Separata, se considera haber descrito las instalaciones de referencia a la **Dirección General de Urbanismo y Ordenación del Territorio** sin perjuicio de cualquier ampliación, modificación o aclaración que las autoridades competentes o partes interesadas considerasen oportunas

Córdoba, junio de 2025

El Ingeniero Agrónomo

Fdo. Manuel Cañas Mayordomo Colegiado 1.617 El Ingeniero Industrial

Fdo. Daniel Correro Cabrera Colegiado 7.426

12. Anexo: Planos

1. Planta Fotovoltaica

- 1.1. Situación
- 1.2. Emplazamiento
- 1.3. Implantación

2. SET Elevadora 30/220 kV

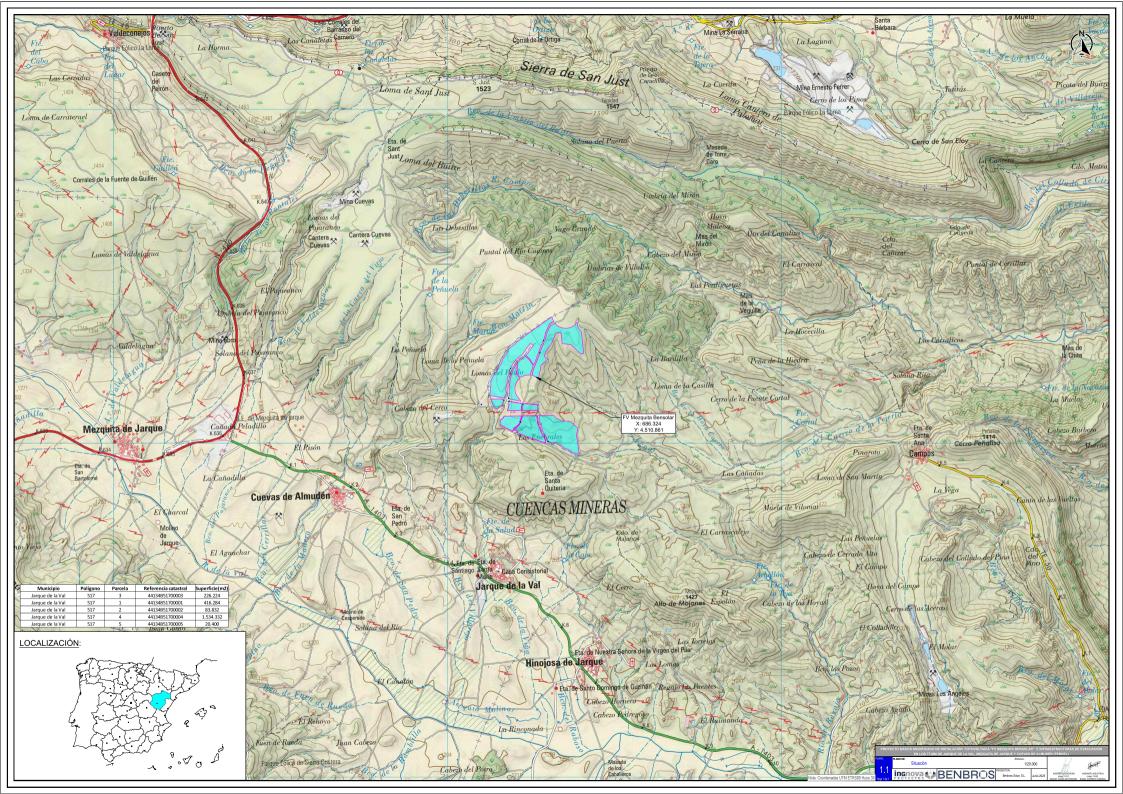
- 2.1. Situación
- 2.2. Emplazamiento
- 2.3. Implantación

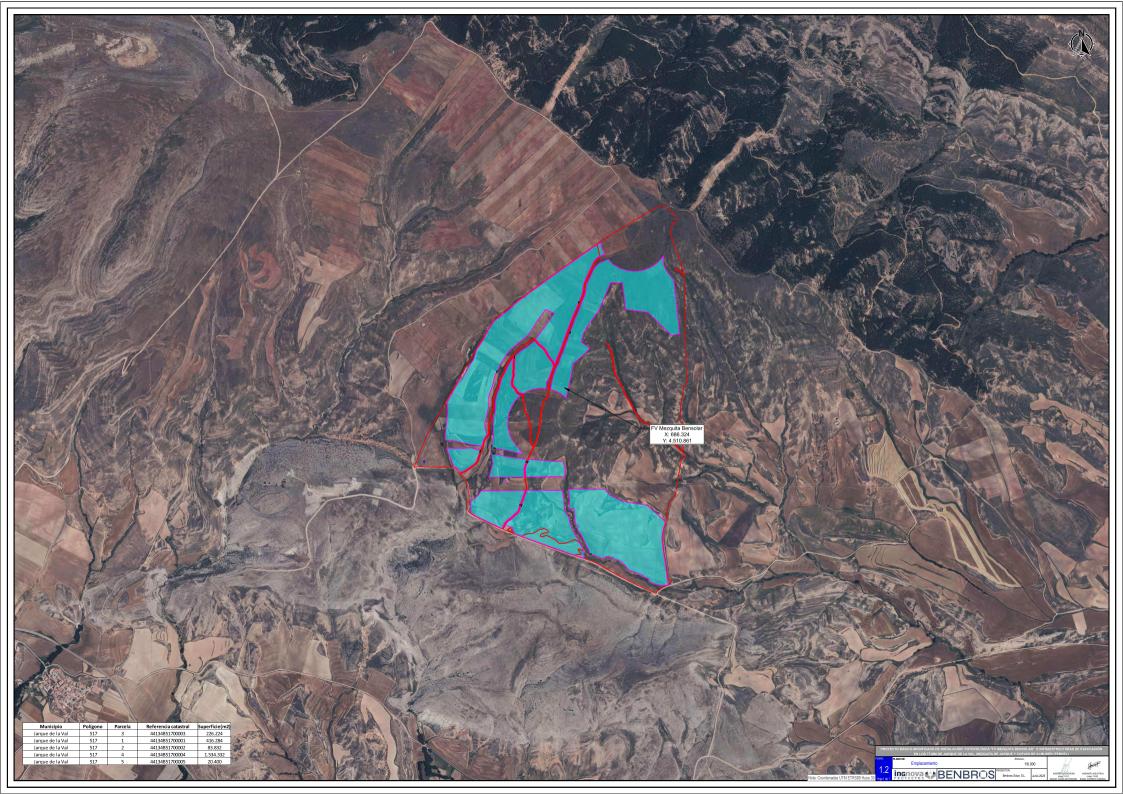
3. LSAT 220 kV

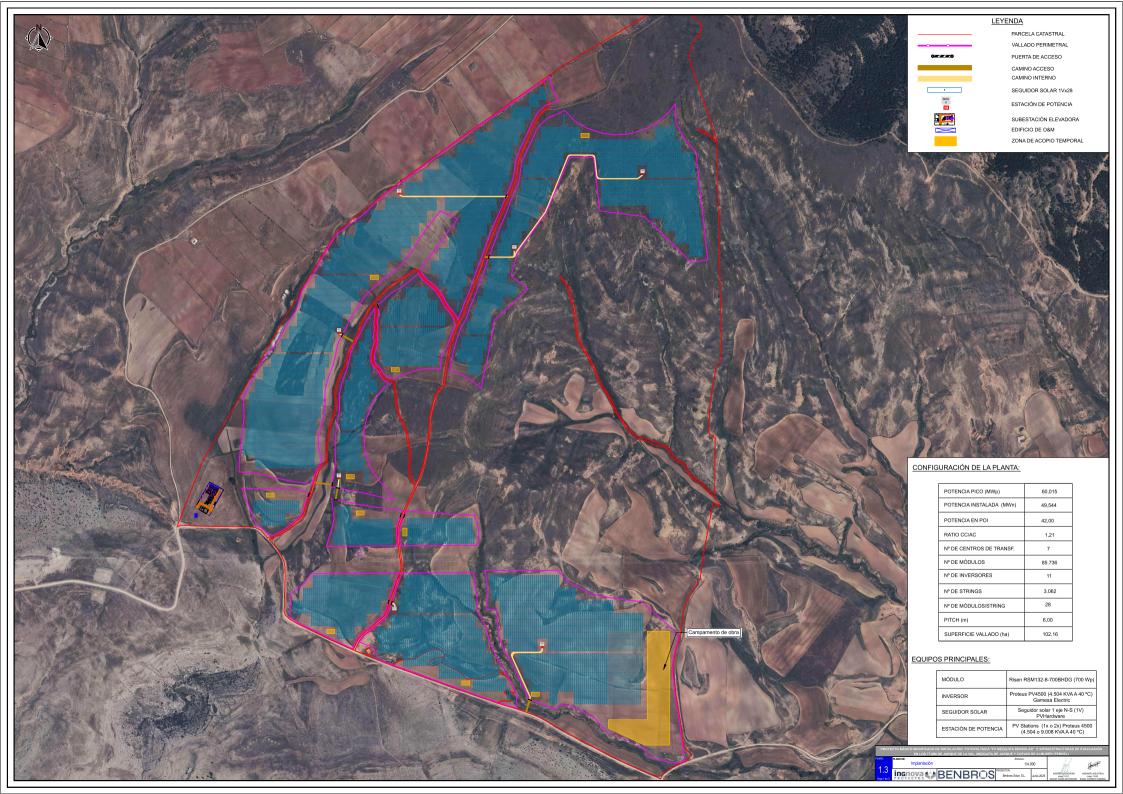
- 3.1. Situación
- 3.2. Emplazamiento
- 3.3. Trazado

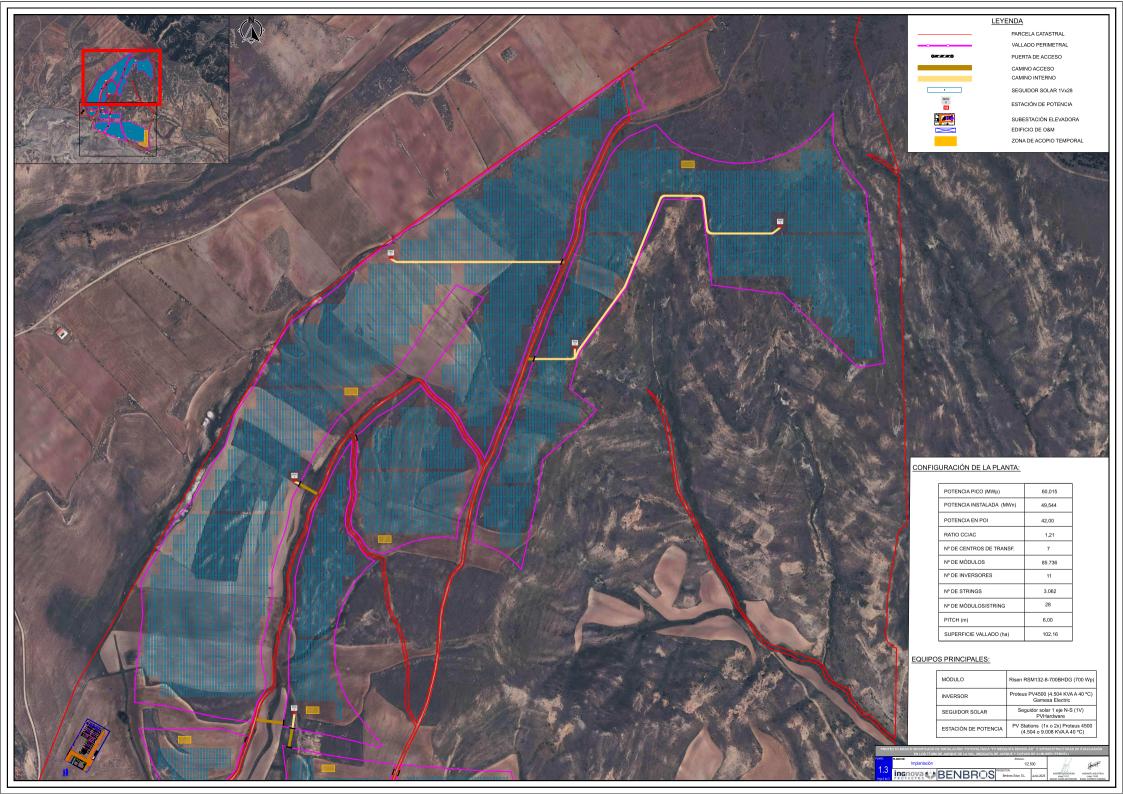
4. SET Seccionadora Mezquita

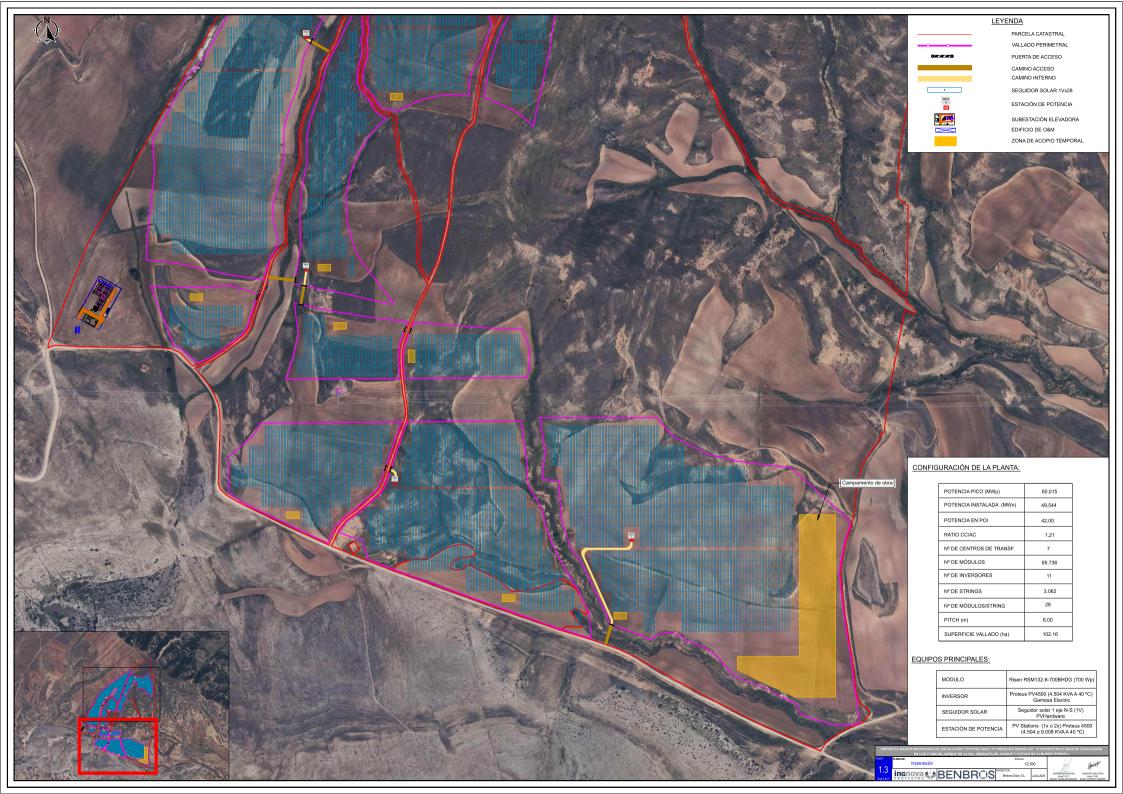
- 4.1. Situación
- 4.2. Emplazamiento
- 4.3. Implantación


Planos Planta Fotovoltaica


PROYECTO BÁSICO MODIFICADO DE INSTALACIÓN FOTOVOLTAICA "FV MEZQUITA BENSOLAR" E INFRAESTRUCTURAS DE EVACUACIÓN
EN LOS TT.MM DE JARQUE DE LA VAL, MEZQUITA DE JARQUE Y CUEVAS DE ALMUDÉN (TERUEL)


PLANO:
PLANO:
PORTADA


PORTADA


PROMOTOR

Subestación Elevadora

PROYECTO BÁSICO MODIFICADO DE INSTALACIÓN FOTOVOLTAICA "FV MEZQUITA BENSOLAR" E INFRAESTRUCTURAS DE EVACUACIÓN EN LOS TT.MM DE JARQUE DE LA VAL, MEZQUITA DE JARQUE Y CUEVAS DE ALMUDÉN (TERUEL)

PLANO PLANO DE:

PORTADA

PORTADA

PORTADA

PORTADA

PORTADA

PLANO DE:

PLANO DE:

PORTADA

PLANO DE:

PORTADA

PLANO DE:

PLANO DE:

PORTADA

PLANO DE:

PLANO DE:

PORTADA

PLANO DE:

PORTADA

PLANO DE:

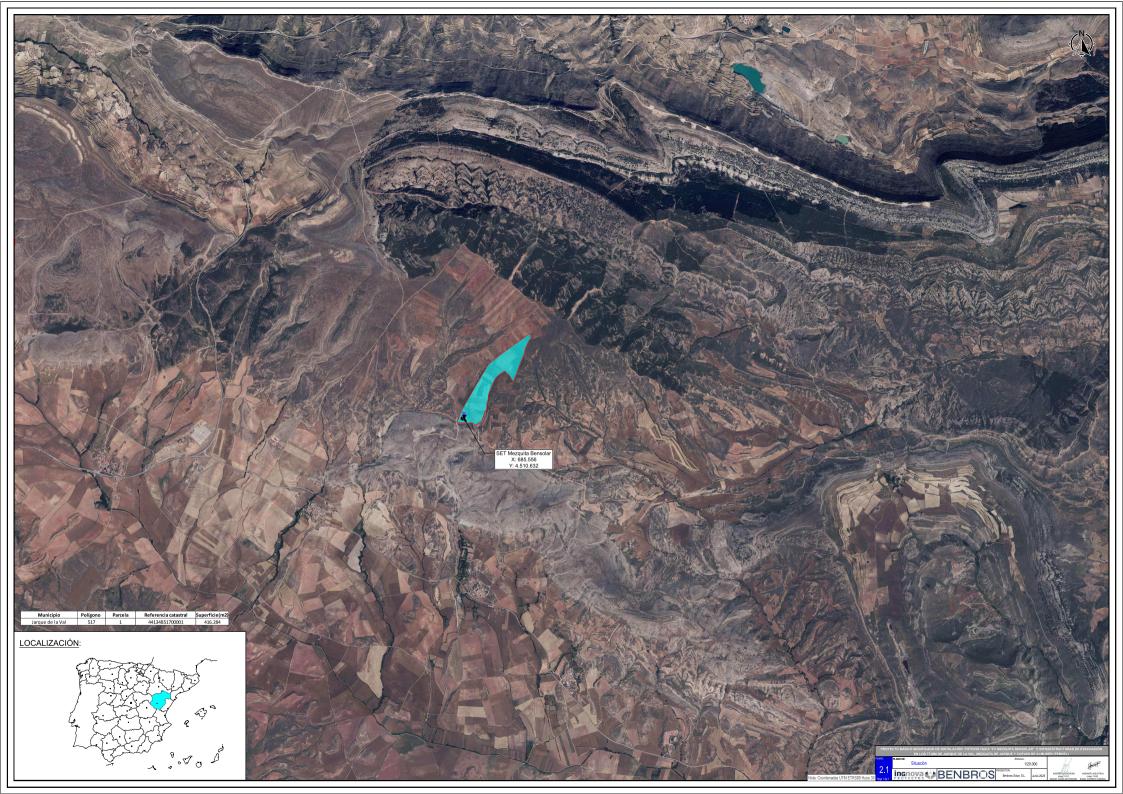
PLANO DE:

PORTADA

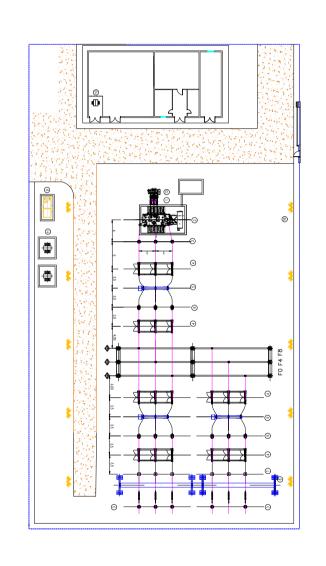
PLANO DE:

PLANO DE:

PORTADA

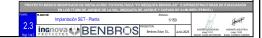

PLANO DE:

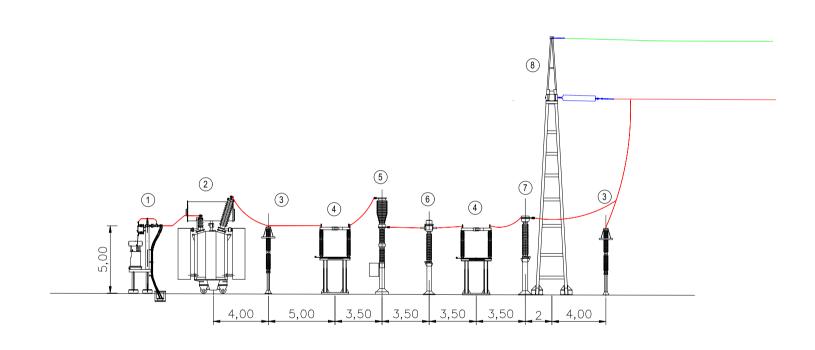
2.0 ingnova BENBR


IBROS PROMOTOR:
Benbros

.. Junio 2025

INGENIERO AGRÓNOMO INGENIERO INDUS (coleg.:1.617) (coleg.:7.428) ANUEL CAÑAS MAYORDOMO DANIEL CORRERO CA





LEYENDA

- ① REACTANCIA PAT 30 KV
- ② TRANSFORMADOR DE POTENCIA 220 / 30 kV
- 3 AUTOVÁLVULAS 220 kV
- 4 SECCIONADOR PAT 220 KV
- ⑤ INTERRUPTOR PROTECCIÓN 220 kV
- 6 TRANSFORMADOR INTENSIDAD 220 kV
- 7 TRANSFORMADOR DE TENSIÓN CAPACITIVO 220 KV
- 8 PÓRTICO DE LÍNEA
- GENERADOR DIESEL
- ① PROYECTOR
- 11) TRANSFORMADOR SSAA
- DEPÓSITO RECOGIDA DE ACEITE

LEYENDA

- ① REACTANCIA PAT 30 KV
- ② TRANSFORMADOR DE POTENCIA 220 / 30 kV
 - 3 AUTOVÁLVULAS 220 kV
 - SECCIONADOR PAT 220 KV
 - (5) INTERRUPTOR PROTECCIÓN 220 kV
- 6 TRANSFORMADOR INTENSIDAD 220 kV
- TRANSFORMADOR DE TENSIÓN CAPACITIVO 220 KV
- 8 PÓRTICO DE LÍNEA

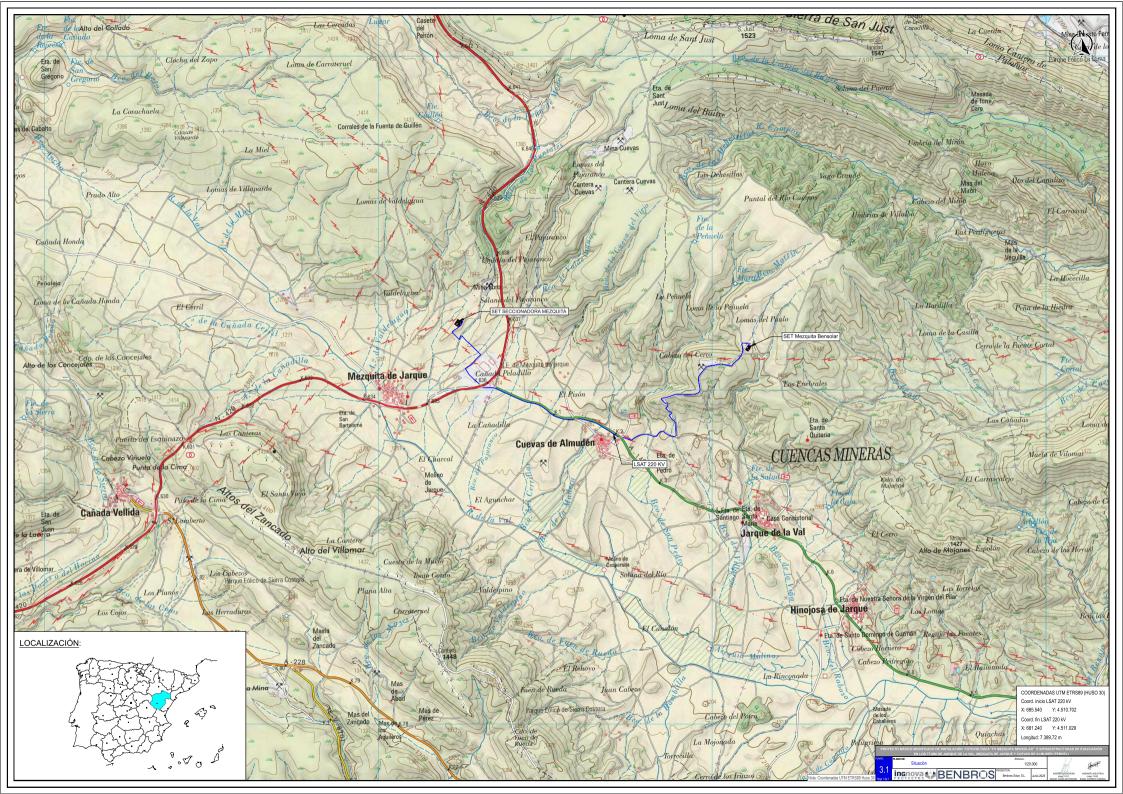
LSAT 220 KV

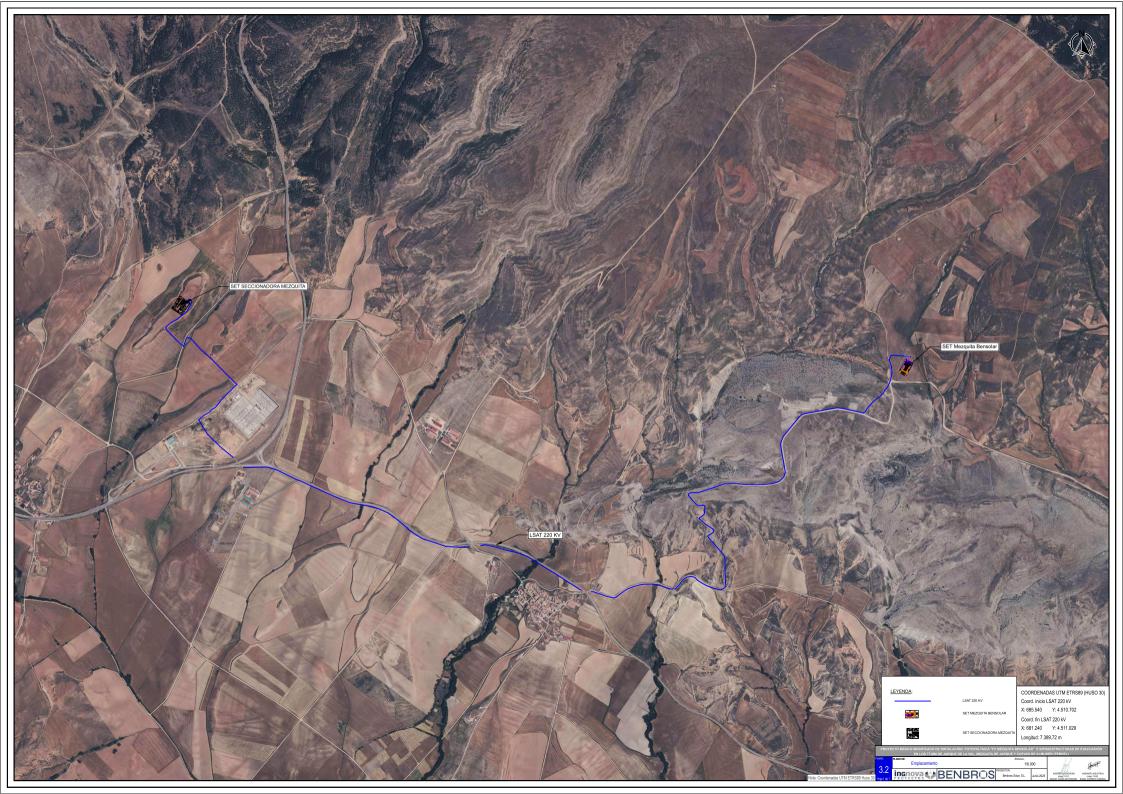
PROYECTO BÁSICO MODIFICADO DE INSTALACIÓN FOTOVOLTAICA "FV MEZQUITA BENSOLAR" E INFRAESTRUCTURAS DE EVACUACIÓN EN LOS TT.MM DE JARQUE DE LA VAL, MEZQUITA DE JARQUE Y CUEVAS DE ALMUDÉN (TERUEL.)

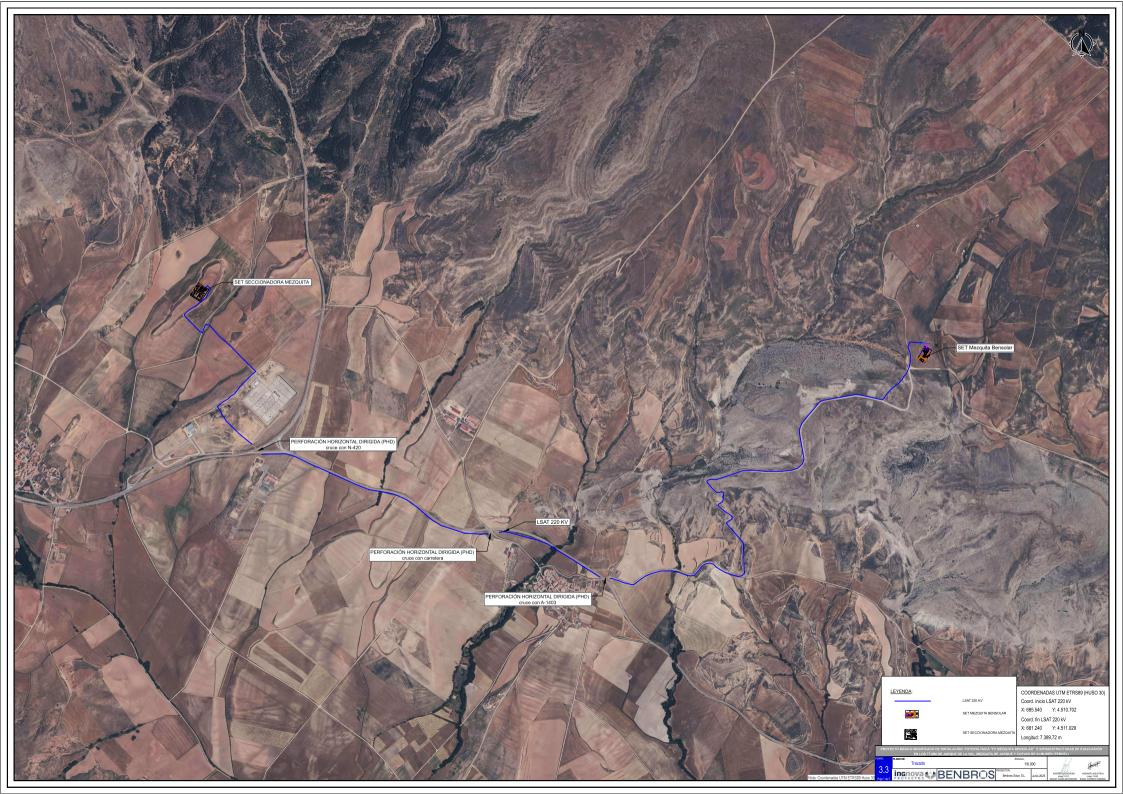
PLANO E:

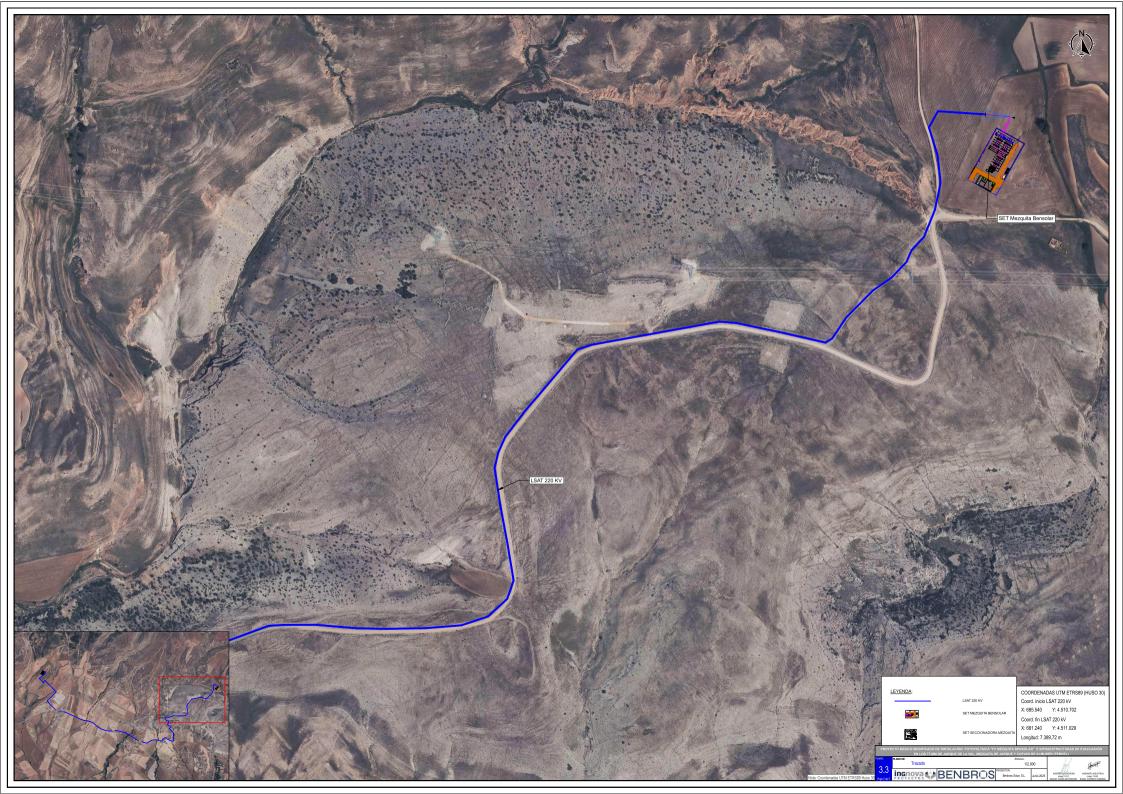
PORTADA

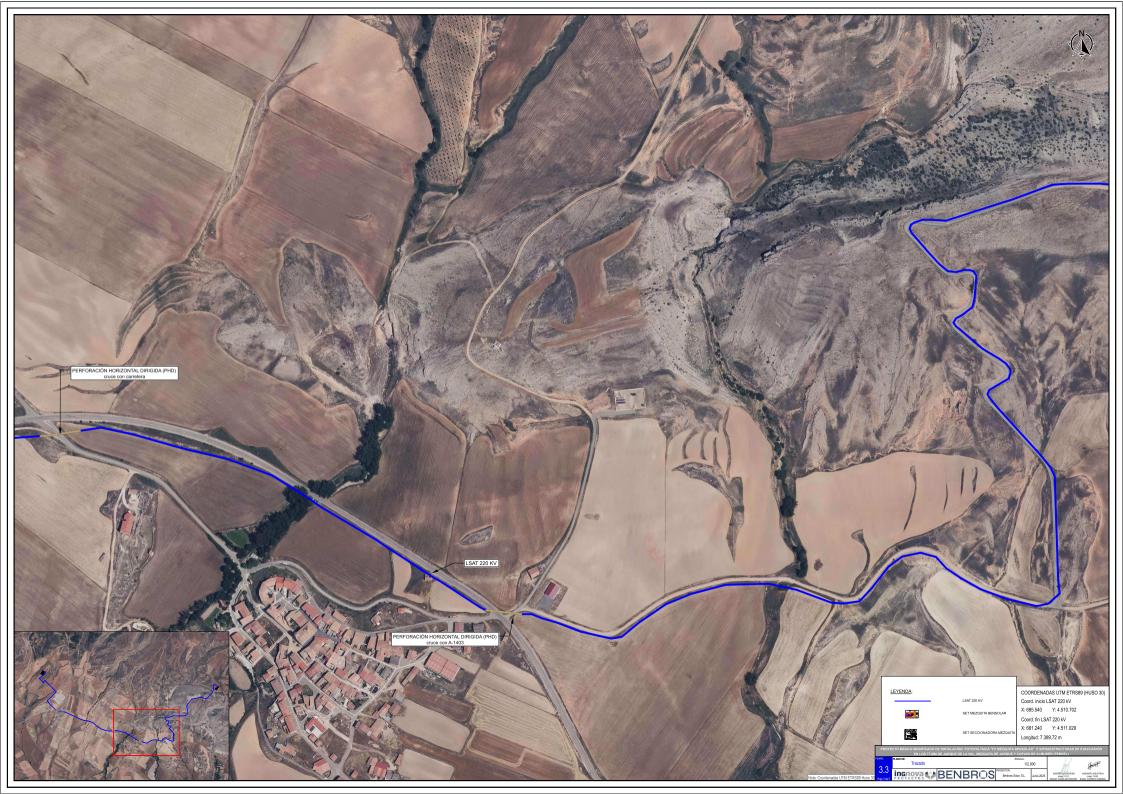
PLANO DE:

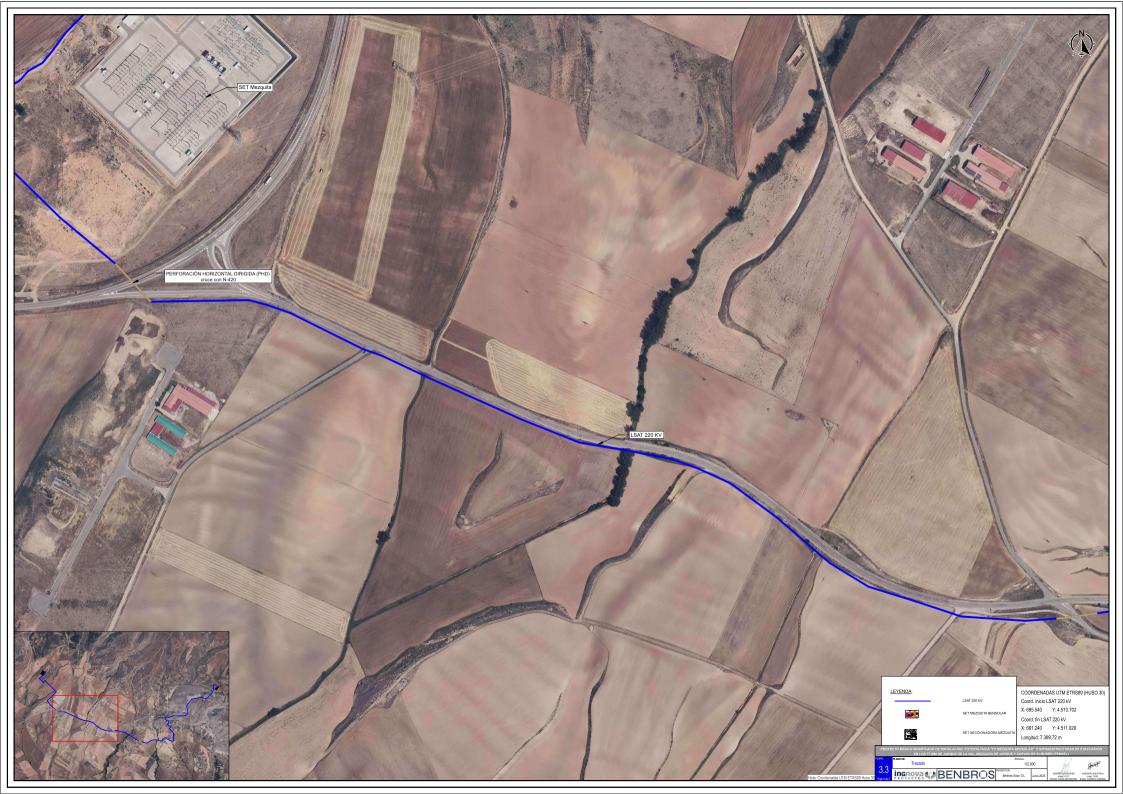

PORTADA

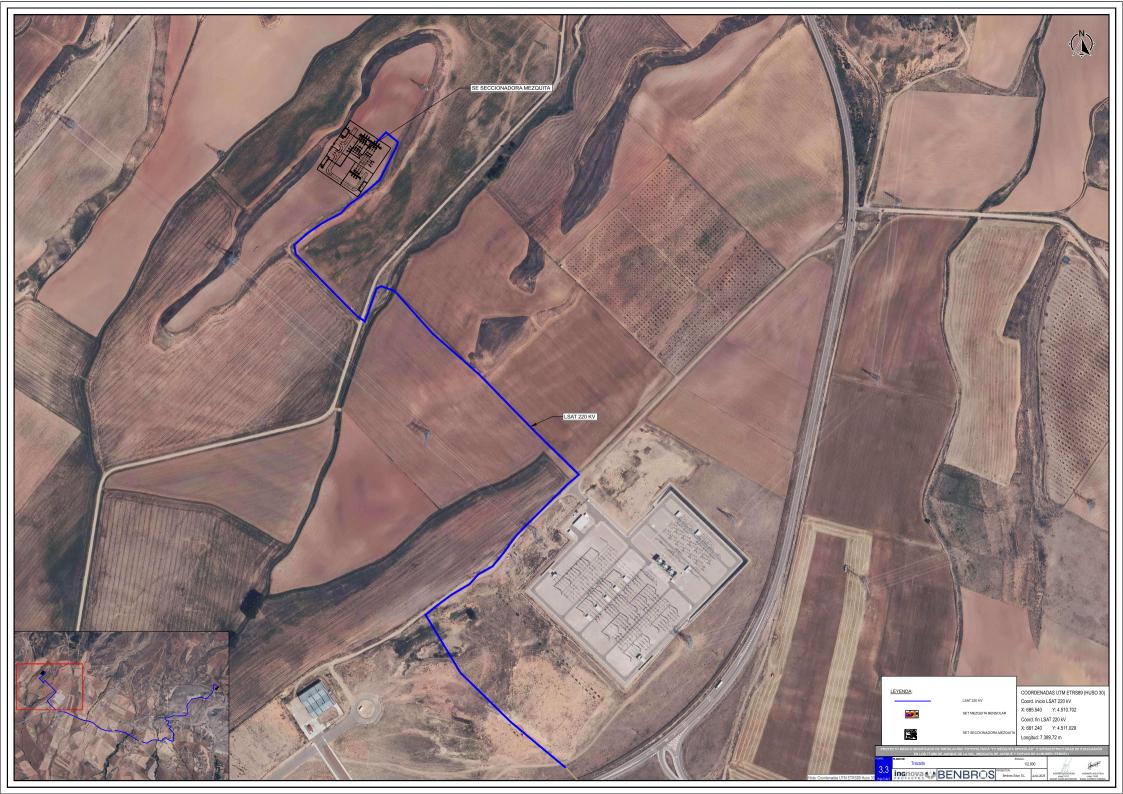

PORTADA


10.0 ingnova BENBROS


Benbros Solar, S.L. Junio 2025


INGENIERO AGRÓNOMO INGENIERO INDUSTRIAL (coleg.1.617) (coleg.7.428) (coleg.7.428) MANUEL CAÑAS MAYORDOMO DANIEL CORRERO CABRERA

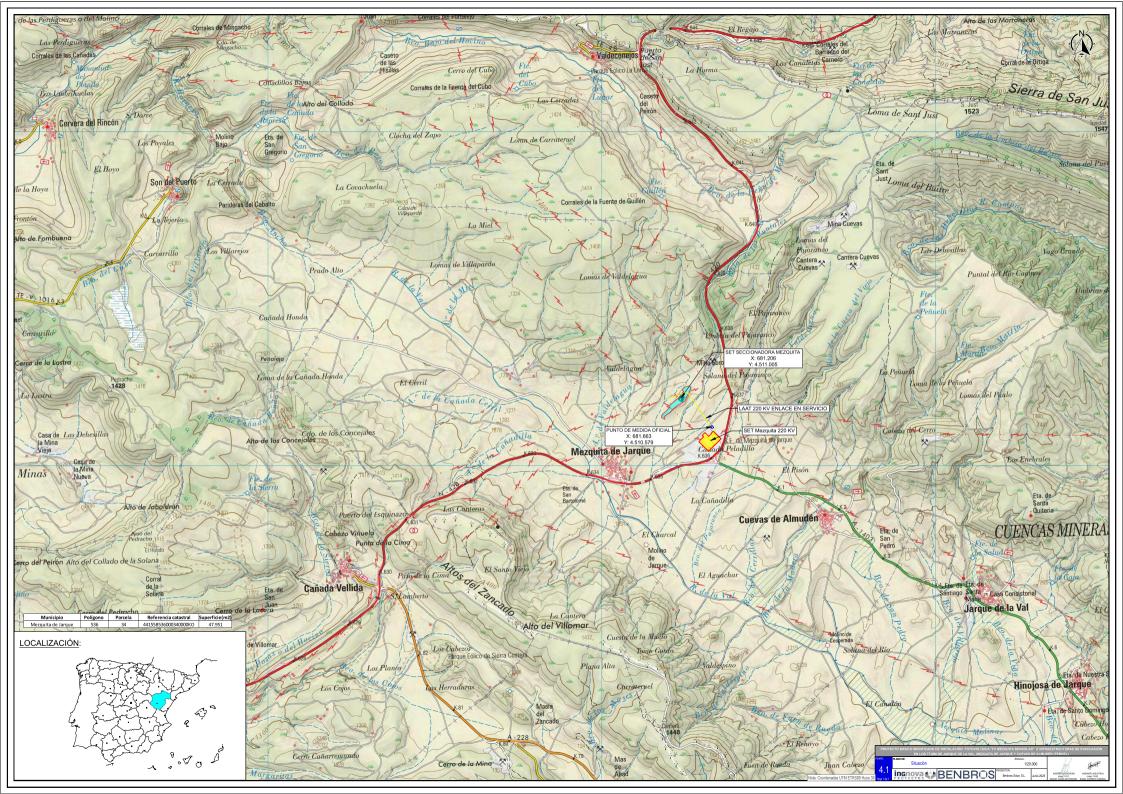


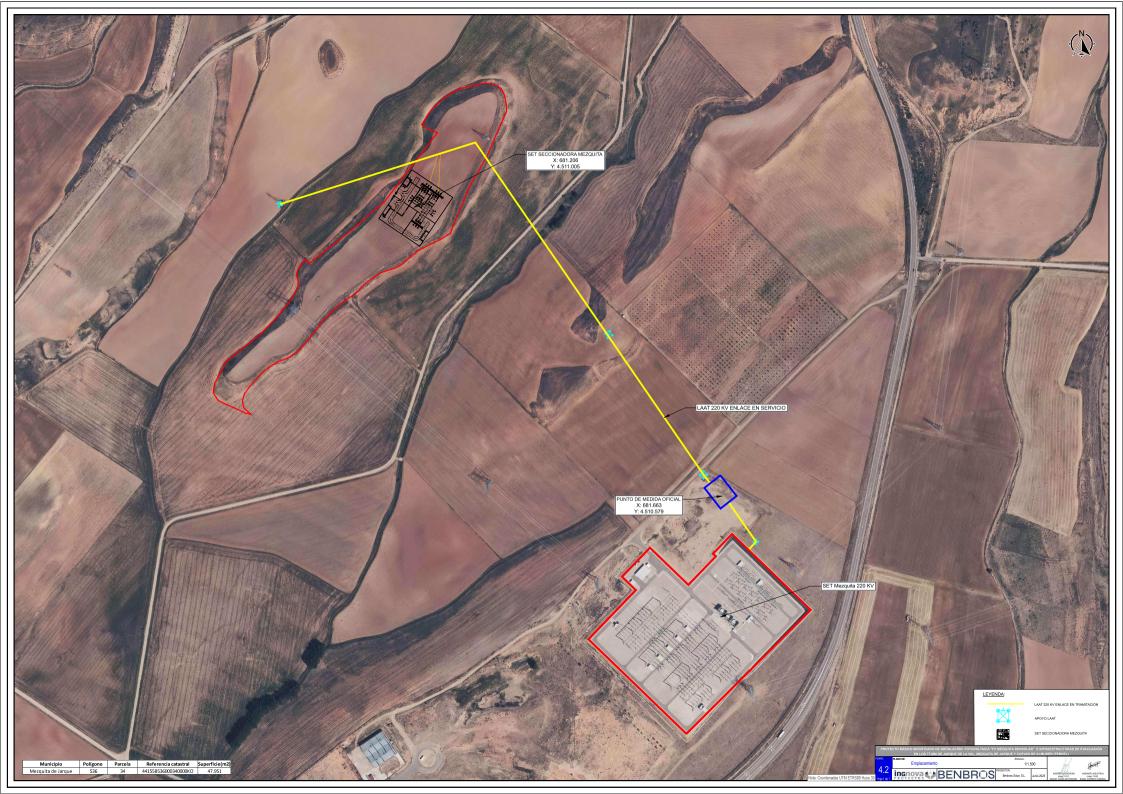


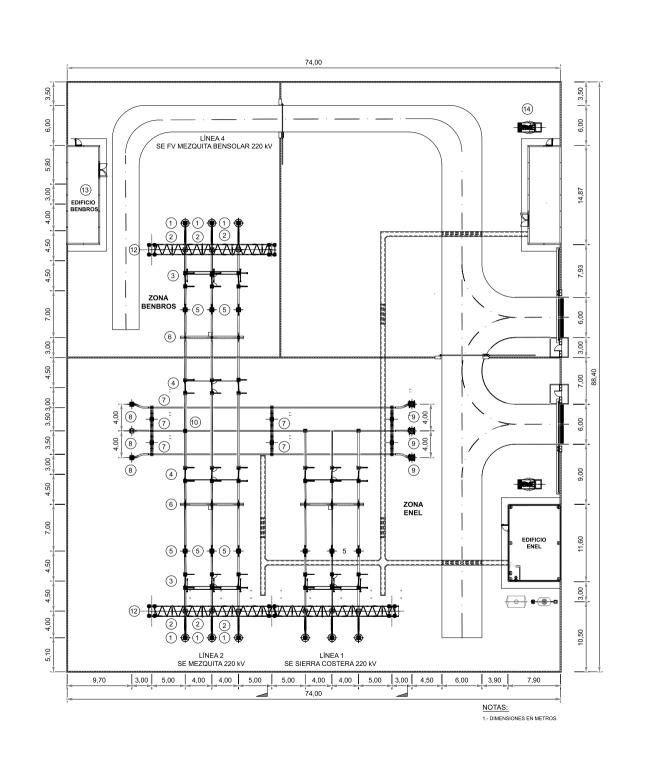
SET SECCIONADORA MEZQUITA

PROYECTO BÁSICO MODIFICADO DE INSTALACIÓN FOTOVOLTAICA "FV MEZQUITA BENSOLAR" E INFRAESTRUCTURAS DE EVACUACIÓN EN LOS TT.MM DE JARQUE DE LA VAL, MEZQUITA DE JARQUE Y CUEVAS DE ALMUDEN (TERUEL)

PLANO
PLANO
PLANO
PORTA

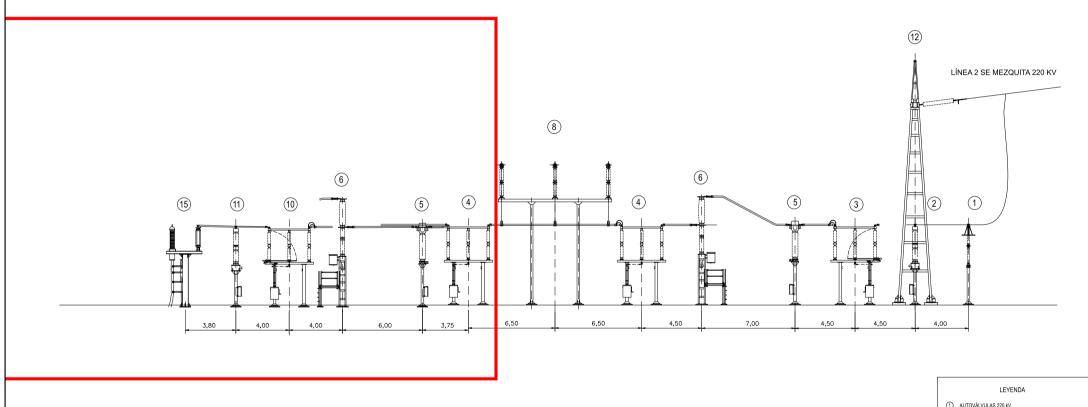

PORTA


PORTA


PROMOTOR:

RESPUES PROMOTOR:

RESPUES SAIR S. L. MUNIO 2005
RESPUES NOUSTRAL



LEYENDA

- ① AUTOVÁLVULAS 220 kV
- TRANSFORMADOR DE TENSIÓN 220 KV
- 3 SECCIONADOR TRIPOLAR CON PAT 220 KV
- 4 SECCIONADOR TRIPOLAR SIN PAT 220 KV
- 5 TRANSFORMADOR INTENSIDAD 220 kV
- ⑥ INTERRUPTOR PROTECCIÓN 220 kV
- AISLADOR PORTICOS DE BARRAS
- TRANSFORMADOR DE TENSIÓN DE BARRAS 220 KV
- TRANSFORMADOR DE TENSIÓN DE BARRAS 220 KV PARA SS.AA.
- (10) AISLADOR SOPORTE
- 10 BOTELLA TERMINAL 220 KV
- PÓRTICO LÍNEA 220 KV
- (3) EDIFICIO DE CONTROL
- (4) GRUPO ELÉCTROGENO 100 KVA

INGROVE CT OS BENBROS BETTER Sole S.L. Janio 2025

OBJETO DE ESTE PROYECTO

- ① AUTOVÁLVULAS 220 kV
- ② TRANSFORMADOR DE TENSIÓN 220 KV
- 3 SECCIONADOR TRIPOLAR CON PAT 220 KV
- 4 SECCIONADOR TRIPOLAR SIN PAT 220 KV
- (5) TRANSFORMADOR INTENSIDAD 220 kV
- ⑥ INTERRUPTOR PROTECCIÓN 220 kV
- (8) TRANSFORMADOR DE TENSIÓN DE BARRAS 220 KV
- SECCIONADOR PAT 220 KV
 TRANSFORMADOR DE TENSIÓN DE LÍNEA 220 KV
- PÓRTICO LÍNEA 220 KV
- ® AUTOVÁLVULAS MÁS BOTELLA TERMINAL 220 KV

INGROVA BENBROS BENDROS Bentrus Solat S.L. Anio 2025