

Nombre de la instalación: PE LAS MAJAS VII E

Provincia/s ubicación de la instalación: HERRERA DE LOS NAVARROS

Nombre del titular: REPSOL S.A.

CIF del titular: B-87755492

Nombre de la empresa de vigilancia: LUZ DE GESTIÓN Y MEDIO AMBIENTE S.L.

Tipo de EIA: ORDINARIA

Informe de FASE de: EXPLOTACIÓN

Periodicidad del informe según DIA: CUATRIMESTRAL

Año de seguimiento nº: AÑO 4

nº de informe y año de seguimiento: INFORME № 2 DEL AÑO 4

Período que recoge el informe: MAYO 2024- AGOSTO 2024

ÍNDICE

1.	INTRODUCCIÓN 5
1.1.	ANTECEDENTES
1.2.	OBJETO DEL INFORME
2.	LOCALIZACIÓN DEL PROYECTO
2.1.	DESCRIPCIÓN DEL ÁREA DE ESTUDIO
2.2.	DESCRIPCIÓN DEL AEROGENERADOR
3.	SEGUIMIENTO DE AVIFAUNA Y QUIROPTEROFAUNA 12
3.1.	METODOLOGÍA DEL SEGUIMIENTO DE AVIFAUNA12
3.1.1.	CALENDARIO DE TRABAJO13
3.1.2.	USO DEL ESPACIO POR LA AVIFAUNA EN LA ZONA DE ESTUDIO14
3.1.3.	SEGUIMIENTO PERIÓDICO14
3.1.4.	Tratamiento de datos y comunicación a organismo autonómico18
3.1.5.	DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL
3.2.	CRONOLOGÍA DE LAS VISITAS REALIZADAS21
3.2.1.	TRATAMIENTO DE DATOS Y COMUNICACIÓN A ORGANISMO AUTONÓMICO22
3.3.	RESULTADOS DEL ESTUDIO DE AVIFAUNA23
3.3.1.	USO DE ESPACIO DE TODAS LAS ESPECIES23
3.3.2.	CENSO DE AVIFAUNA25
3.3.3.	ESTUDIO DE LOS VUELOS DE AVES DE GRAN ENVERGADURA29
3.4.	ESTUDIO DE RIESGO PARA LAS AVES38
3.4.1.	METODOLOGÍA ESTUDIO DE RIESGO PARA LAS AVES38
3.4.2.	RESULTADOS ISA E IVE
3.4.3.	USO DEL ESPACIO DE AVES DE GRAN ENVERGADURA43
3.4.3.	1. Buitre leonado (<i>Gyps fulvus</i>)45
3.4.3.2	2. AGUILUCHO LAGUNERO (<i>CIRCUS AERUGINOSUS</i>)48
3.4.3.	3. CERNÍCALO VULGAR (FALCO TINNUNCULUS) Y CERNÍCALO PRIMILLA (FALCO NAUMANNI)50
3.4.3.	4. MILANO NEGRO (MILVUS MIGRANS)52
3.4.3.	5. CULEBRERA EUROPEA (<i>CIRCAETUS GALLICUS</i>)53
3.4.3.0	5. CORNEJA NEGRA (CORVUS CORONE)55
3.4.4.	ZONAS DE NIDIFICACIÓN56

3.5. METODOLOGÍA DEL SEGUIMIENTO DE LA QUIROPTEROFAUNA			
3.5.2. INSPECCIÓN DE REFUGIOS POTENCIALES Y PUNTOS DE AGUA	3.5.	METODOLOGÍA DEL SEGUIMIENTO DE LA QUIROPTEROFAUNA	58
3.5.3. TIPOS DE REFUGIOS	3.5.1.	Muestreo mediante estaciones de grabación continua	59
3.5.4. FUNDAMENTOS ECOLOCACIÓN	3.5.2.	Inspección de refugios potenciales y puntos de agua	63
3.6. RESULTADOS DEL ESTUDIO DE QUIRÓPTEROS	3.5.3.	TIPOS DE REFUGIOS	64
3.6.1. ESPECIES DETECTADAS 6 3.6.2. HORARIOS DE ACTIVIDAD 7 3.6.3. DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DE LA MORTANDAD 8 3.7. MÉTODO DE ESTUDIO DE LA MORTANDAD 8 3.7.1. DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL 8 3.7.2. PERIODO DE VISITAS FIJADO 8 3.7.3. PROTOCOLO METODOLÓGICO 8 3.7.4. PARÁMETROS DE MORTANDAD 9 3.7.4.1. TASA DE DETECTABILIDAD 9 3.7.4.2. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.3. RESULTADO 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.6. RESULTADO 9 3.7.4.7.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.6. RESULTADO 9 3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO 9 3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO 9 3.8.1. DATOS DE MORTANDAD 9 3.8.1. CÓLICULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10	3.5.4.	FUNDAMENTOS ECOLOCACIÓN	65
3.6.2. HORARIOS DE ACTIVIDAD 7 3.6.3. DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DEL HÁBITAT. 7 3.6.4. DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DE SU CICLO VITAL. 8 3.7. MÉTODO DE ESTUDIO DE LA MORTANDAD. 8 3.7.1. DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL 8 3.7.2. PERIODO DE VISITAS FIJADO. 8 3.7.3. PROTOCOLO METODOLÓGICO. 8 3.7.4. PARÁMETROS DE MORTANDAD. 9 3.7.4.1. TASA DE DETECTABILIDAD. 9 3.7.4.2. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.3. RESULTADO 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.6. RESULTADO 9 3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO 9 3.8.1. DATOS DE MORTANDAD. 9 3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS. 10 3.9.1. PINTADO DE PALAS. 10 3.9.2. SISTEMAS DE D	3.6.	RESULTADOS DEL ESTUDIO DE QUIRÓPTEROS	68
3.6.3. DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DEL HÁBITAT. 7 3.6.4. DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DE SU CICLO VITAL. 8 3.7. MÉTODO DE ESTUDIO DE LA MORTANDAD. 8 3.7.1. DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL 8 3.7.2. PERIODO DE VISITAS FIJADO. 8 3.7.3. PROTOCOLO METODOLÓGICO. 8 3.7.4. PARÁMETROS DE MORTANDAD. 9 3.7.4.1. TASA DE DETECTABILIDAD. 9 3.7.4.2. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.3. RESULTADO 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.6. RESULTADO 9 3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO 9 3.8.1. DATOS DE MORTANDAD. 9 3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS. 10 3.9.1. PINTADO DE PALAS. 10 3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (D'BIRD). 10 3.9.3.	3.6.1.	ESPECIES DETECTADAS	68
3.6.4. DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DE SU CICLO VITAL. 8 3.7. MÉTODO DE ESTUDIO DE LA MORTANDAD. 8 3.7.1. DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL 8 3.7.2. PERIODO DE VISITAS FIJADO. 8 3.7.3. PROTOCOLO METODOLÓGICO. 8 3.7.4. PARÁMETROS DE MORTANDAD. 9 3.7.4.1. TASA DE DETECTABILIDAD. 9 3.7.4.2. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.3. RESULTADO. 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.6. RESULTADO. 9 3.7.4.6. RESULTADO DE EJECUCIÓN 9 3.8.1. DATOS DE MORTANDAD 9 3.8.1. DATOS DE MORTANDAD 9 3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS 10 3.9.1. PINTADO DE PALAS 10 3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD) 10 3.9.3. ANÁLISIS DE VISIONADO DE VIDEOS 10 3.9.4. RESULTADOS 11 3.9.5. MEJORAS EN SISTEMAS DTBIRD 11 3.10. PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN 12 3.10.1. REDUCCIÓN RASTROJOS DE LARGA DURACIÓN ENTORNO A LOS AEROGENERADORES 12 4. RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS 12	3.6.2.	HORARIOS DE ACTIVIDAD	73
3.7. MÉTODO DE ESTUDIO DE LA MORTANDAD	3.6.3.	DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DEL HÁBITAT	76
3.7.1. DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL 8 3.7.2. PERIODO DE VISITAS FIJADO 8 3.7.3. PROTOCOLO METODOLÓGICO 8 3.7.4. PARÁMETROS DE MORTANDAD 9 3.7.4.1. TASA DE DETECTABILIDAD 9 3.7.4.2. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.3. RESULTADO 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO 9 3.8.1. DATOS DE MORTANDAD 9 3.8.1. DATOS DE MORTANDAD 9 3.8.1. CÓLICULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10 3.8.1. COMPARATIVA INTERANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS 10 3.9.1. PINTADO DE PALAS 10 3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD) 10 3.9.3. ANÁLISIS DE VISIONADO DE VIDEOS 10 3.9.4. RESULTADOS 11 3.9.5. MEJORAS EN SISTEMAS DTBIRD 11 <td>3.6.4.</td> <td>DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DE SU CICLO VITAL</td> <td>80</td>	3.6.4.	DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DE SU CICLO VITAL	80
3.7.2. PERIODO DE VISITAS FIJADO 8 3.7.3. PROTOCOLO METODOLÓGICO 8 3.7.4. PARÁMETROS DE MORTANDAD 9 3.7.4.1. TASA DE DETECTABILIDAD 9 3.7.4.2. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.3. RESULTADO 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.6. RESULTADO 9 3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO 9 3.8.1. DATOS DE MORTANDAD 9 3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10 3.8.1. COMPARATIVA INTERANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS 10 3.9.1. PINTADO DE PALAS 10 3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD) 10 3.9.3. ANÁLISIS DE VISIONADO DE VIDEOS 10 3.9.4. RESULTADOS 10 3.9.5. MEJORAS EN SISTEMAS DTBIRD 11 3.10. PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN 12	3.7.	MÉTODO DE ESTUDIO DE LA MORTANDAD	83
3.7.3. PROTOCOLO METODOLÓGICO	3.7.1.	DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL	83
3.7.4. PARÁMETROS DE MORTANDAD 9 3.7.4.1. TASA DE DETECTABILIDAD 9 3.7.4.2. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.3. RESULTADO 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.8. ACCIDENTALIDAD 9 3.8.1. DATOS DE MORTANDAD 9 3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10 3.8.1. COMPARATIVA INTERANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS 10 3.9.1. PINTADO DE PALAS 10 3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD) 10 3.9.3. ANÁLISIS DE VISIONADO DE VIDEOS 10 3.9.4. RESULTADOS 10 3.9.5. MEJORAS EN SISTEMAS DTBIRD 11 3.10. PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN 12 3.10.1. REDUCCIÓN RASTROJOS DE LARGA DURACIÓN ENTORNO A LOS AEROGENERADORES 12 4. RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS 12	3.7.2.	PERIODO DE VISITAS FIJADO	85
3.7.4.1. TASA DE DETECTABILIDAD	3.7.3.	PROTOCOLO METODOLÓGICO	85
3.7.4.2. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.3. RESULTADO 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.6. RESULTADO 9 3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO 9 3.8.1. DATOS DE MORTANDAD 9 3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10 3.8.1. COMPARATIVA INTERANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS 10 3.9.1. PINTADO DE PALAS 10 3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD) 10 3.9.3. ANÁLISIS DE VISIONADO DE VIDEOS 10 3.9.4. RESULTADOS 10 3.9.5. MEJORAS EN SISTEMAS DTBIRD 11 3.10. PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN 12 3.10.1. REDUCCIÓN RASTROJOS DE LARGA DURACIÓN ENTORNO A LOS AEROGENERADORES 12 4. RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS 12	3.7.4.	PARÁMETROS DE MORTANDAD	90
3.7.4.3. RESULTADO 9 3.7.4.4. TASA DE PERMANENCIA 9 3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN 9 3.7.4.6. RESULTADO 9 3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO 9 3.8.1. DATOS DE MORTANDAD 9 3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL 10 3.8.1. COMPARATIVA INTERANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS 10 3.9.1. PINTADO DE PALAS 10 3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD) 10 3.9.3. ANÁLISIS DE VISIONADO DE VIDEOS 10 3.9.4. RESULTADOS 10 3.9.5. MEJORAS EN SISTEMAS DTBIRD 11 3.10. PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN 12 3.10.1. REDUCCIÓN RASTROJOS DE LARGA DURACIÓN ENTORNO A LOS AEROGENERADORES 12 4. RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS 12	3.7.4.1	L. TASA DE DETECTABILIDAD	91
3.7.4.4. TASA DE PERMANENCIA	3.7.4.2	2. MATERIAL Y MÉTODO DE EJECUCIÓN	91
3.7.4.5. MATERIAL Y MÉTODO DE EJECUCIÓN	3.7.4.3	3. RESULTADO	92
3.7.4.6. RESULTADO	3.7.4.4	1. TASA DE PERMANENCIA	93
3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO	3.7.4.5	MATERIAL Y MÉTODO DE EJECUCIÓN	94
3.8.1. DATOS DE MORTANDAD	3.7.4.6	RESULTADO	95
3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL	3.8.	ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO	95
3.8.1. COMPARATIVA INTERANUAL 10 3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS 10 3.9.1. PINTADO DE PALAS 10 3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD) 10 3.9.3. ANÁLISIS DE VISIONADO DE VIDEOS 10 3.9.4. RESULTADOS 11 3.9.5. MEJORAS EN SISTEMAS DTBIRD 11 3.10. PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN 12 3.10.1. REDUCCIÓN RASTROJOS DE LARGA DURACIÓN ENTORNO A LOS AEROGENERADORES 12 4. RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS 12	3.8.1.	DATOS DE MORTANDAD	96
3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS	3.8.2.	CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL	103
3.9.1. PINTADO DE PALAS	3.8.1.	COMPARATIVA INTERANUAL	105
3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD)	3.9.	SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS	106
3.9.3. ANÁLISIS DE VISIONADO DE VIDEOS	3.9.1.	PINTADO DE PALAS	106
3.9.4. RESULTADOS	3.9.2.	SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD)	107
3.9.5. MEJORAS EN SISTEMAS DTBIRD	3.9.3.	ANÁLISIS DE VISIONADO DE VIDEOS	108
3.10. PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN	3.9.4.	Resultados	112
 3.10.1. REDUCCIÓN RASTROJOS DE LARGA DURACIÓN ENTORNO A LOS AEROGENERADORES12 4. RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS	3.9.5.	MEJORAS EN SISTEMAS DTBIRD	114
4. RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS 12	3.10.	PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN	121
	3.10.1	. REDUCCIÓN RASTROJOS DE LARGA DURACIÓN ENTORNO A LOS AEROGENERADORES	121
E ADUCACIÓN DE MEDIDAS COMPLEMENTADIAS	4.	RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS	. 124
5. APLICACION DE MEDIDAS COMPLEMENTARIAS 120	5.	APLICACIÓN DE MEDIDAS COMPLEMENTARIAS	. 128

5.1.	PLAN DE MEDIDAS COMPLEMENTARIAS
6.	CALIDAD ACÚSTICA137
6.1.	METODOLOGÍA
6.1.1.	ESPECIFICACIONES TÉCNICAS DE LAS TURBINAS GENERAL ELECTRIC MODELO GE130 – 3,8 MV 141
6.1.2.	SOFTWARE UTILIZADO PARA LAS MEDICIONES
6.2.	ANÁLISIS DEL CÁLCULO DE RUIDO POTENCIAL143
6.3.	RUIDO DE FONDO. ESCENARIO ACÚSTICO14!
6.4. 6.4.1.	MEDICIONES REALIZADAS
7.	GESTIÓN DE RESIDUOS
7.1.	LEGISLACIÓN EN MATERIA DE RESIDUOS152
7.2.	GESTIÓN DE RESIDUOS EN LAS INSTALACIONES
8.	PAISAJE
9.	CONDICIONES TÉCNICAS Y GARANTÍA DE SEGURIDAD 159
9.1.	SISTEMAS CONTRA INCENDIOS
9.2.	PREVENCIÓN DE ACCIDENTES Y SEÑALIZACIÓN159
10.	CONCLUSIONES
11.	EQUIPO REDACTOR
12.	BIBLIOGRAFÍA172
ANEX	O 1: CARTOGRAFÍA
ANEX	O 2: INSPECCIÓN REGISTRO DE PEQUEÑOS PRODUCTORES DE RESIDUOS 3
ANEX	O 3: PLAN DE EMERGENCIA AMBIENTAL
	O 4: INFORME ANÁLISIS ACCIDENTAL DEL CERNÍCALO PRIMILLA (FALCOMANNI)
ANFX	O 5: NUEVA CARTELERÍA

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

1. INTRODUCCIÓN

Este informe ha sido redactado para dar cumplimiento al condicionado de la Declaración de Impacto Ambiental del parque eólico Las Majas VII E, el cual indica lo siguiente:

"Se remitirán a la Dirección General de Energía y Minas (...), informes (...) relativos al desarrollo del plan de vigilancia ambiental, (...) (...) se presentarán (...) en formato digital (textos y planos en archivos con formato. pdf que no superen los 20 MB, datos y resultados en formato exportable, (...), e información georreferenciable en formato shp, huso 30, datum ETRS89). (...)"

De igual modo, se ha adecuado el presente PVA y la información que se entrega, a la comunicación del 23/03/2022 recibida, acerca de la publicación en sede electrónica de os Planes de Vigilancia Ambiental (PVA) y normas de entrega de la documentación correspondiente a los PVA, en la que se refleja que "de acuerdo a la Ley 21/2013, de 9 de diciembre, de evaluación ambiental, legislación básica en lo que respecta al Artículo 52 "Seguimiento de las declaraciones de impacto ambiental y de los informes de impacto ambiental", establece en su apartado 2 que el ÓRGANO SUSTANTIVO (OS) debe hacer público en la sede electrónica toda la documentación relativa al PVA de todas y cada una de las instalaciones tramitadas en la comunidad autónoma. En concreto indica:

"(...) A estos efectos, el promotor remitirá al órgano sustantivo, en caso de que así se haya determinado en la declaración de impacto ambiental o el informe de impacto ambiental y en los términos establecidos en las citadas resoluciones, un informe de seguimiento sobre el cumplimiento de las condiciones, o de las medidas preventivas, correctoras y compensatorias establecidas en la declaración de impacto ambiental.

El informe de seguimiento incluirá un listado de comprobación de las medidas previstas en el programa de vigilancia ambiental. El programa de vigilancia ambiental y el listado de comprobación se harán públicos en la sede electrónica del órgano sustantivo y previamente, se comunicará al órgano ambiental su publicación en la sede electrónica. (...)"

Este informe ha sido elaborado por responsable de la vigilancia ambiental, cuyo nombramiento como vigilante ambiental se hizo extensible tanto al INAGA como al Servicio Provincial de Desarrollo Rural y Sostenibilidad de Zaragoza, a fecha 08/05/2021.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

El mismo, recoge las acciones descritas en los distintos Planes de Vigilancia Ambiental que se detallan en los Estudios de Impacto Ambiental de las infraestructuras de generación, transformación y evacuación de energía que compone el Parque eólico Las Majas VII E, así como las medidas adicionales recogidas en las resoluciones de las Declaraciones de Impacto Ambiental, emitidas por el INAGA, propias de cada una de dichas infraestructuras.

1.1. ANTECEDENTES

El parque eólico Las Majas VII E, está compuesto por 5 aerogeneradores, 1 subestación eléctrica y 1 línea de alta tensión, con evacuación final en la subestación de Muniesa.

Comprende los términos municipales de Azuara, Aguilón y Herrera de los Navarros (Zaragoza).

FUERZAS ENERGÉTICAS DEL SUR DE EUROPA VI, S.L con CIF: B-87755492 y domicilio social en C/Méndez Álvaro 44, 28045 Madrid, promueve la realización del parque eólico **LAS MAJAS VII E** en el término municipal de Herrera de los Navarro, en la provincia de Zaragoza. Compuesto por:

- El Parque Eólico Las Majas VII E, está constituido por 5 aerogeneradores del fabricante General Electric modelo GE-130 de 85 metros de altura de buje, 130 m de rotor, con una potencia unitaria de 3,8 MW y una potencia total instalada de 19 MW.
- La SET LAS MAJAS VII ocupa una superficie de 3.545 m cuadrados de superficie y a ella llegan 13 líneas alimentación a una tensión entre fase de 30kV. Evacua las líneas del parque eólico LAS MAJAS VII E. Conectará con la línea SET LAS MAJAS VII D, con una tensión de salida de 220kV.
- Instalación de línea eléctrica de evacuación de los parques de la zona denominada LAAT 30kv SET LAS MAJAS VII - SET LAS MAJAS VII D con una longitud 10,2 km y compuesta por 34 apoyos, está situada en los términos municipales de Herrera de los Navarros, Villar de los Navarros y Azuara (Zaragoza). Con cotas que oscilan entre 730 m a los 825 m aproximadamente.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

1.2. OBJETO DEL INFORME

El presente documento es el **segundo informe cuatrimestral del año 2024** del parque eólico LAS MAJAS VII E y las infraestructuras de evacuación eléctrica, con evacuación final en la subestación SET Muniesa.

El objeto de este documento es informar sobre las actividades de vigilancia ambiental que se están realizando de acuerdo con los Planes de Vigilancia Ambiental presentados, para realizar una valoración de las afecciones que la explotación del parque eólico está teniendo sobre la avifauna y quiropterofauna existente en el ámbito de los parques eólicos, y realizar el seguimiento del cumplimiento de los objetivos y medidas ambientales presentes en las Declaraciones de Impacto Ambiental, los cuales incluyen un seguimiento de la restauración vegetal y paisajística realizada, de la evolución de los procesos erosivos y del tratamiento de residuos.

El periodo de trabajo comprende al **segundo cuatrimestre**, habiendo realizado tres años de vigilancia con anterioridad, cumpliendo las consideraciones particulares de las DIA en las cadencias semanales y el protocolo metodológico definido.

Este informe expone los resultados y conclusiones obtenidos tras el seguimiento ambiental cuatrimestral realizado, que comprende el periodo desde **mayo a agosto de 2024** en el cuarto año del seguimiento.

2. LOCALIZACIÓN DEL PROYECTO

El parque eólico de Las Majas VII E está ubicado muy próximos al núcleo de Herrera de los Navarros. Comprende los términos municipales de Azuara, Aguilón y Herrera de los Navarros (Zaragoza).

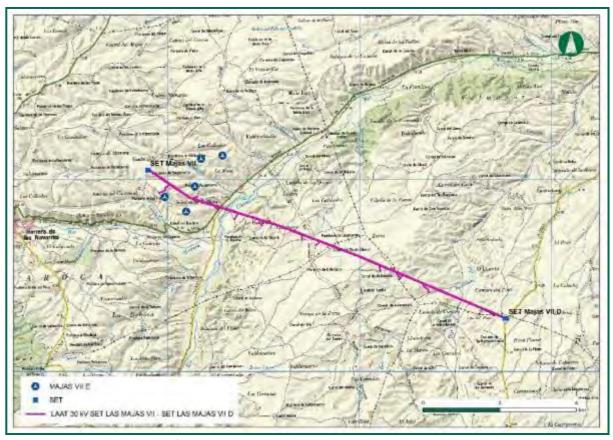


Figura 1. Localización de los parques eólicos y líneas de evacuación.

El Parque Eólico Las Majas VII E se encuentra próximo a la desembocadura del río de Herrera sobre el río Cámaras, en las laderas norte. A menos de 4 km al este de Herrera de los Navarros.

En la siguiente tabla se indican las posiciones de los aerogeneradores, en coordenadas UTM ETRS89 (Huso 30).

Parque	Nº AEG	Х	Υ
MAJAS VII E	LM7E-01	666437	4565613
MAJAS VII E	LM7E-02	665880	4565525
MAJAS VII E	LM7E-03	665719	4564809
MAJAS VII E	LM7E-04	664934	4564539
MAJAS VII E	LM7E-05	665491	4564152

Tabla 1. Coordenadas de los aerogeneradores.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

2.1. DESCRIPCIÓN DEL ÁREA DE ESTUDIO

Este parque está localizado en una zona de gran actividad agraria, entre los ríos: de Herrera, Cámaras, Seco y barranco del Campillo. Estos ríos, a su paso, han ido erosionando la cuenca, formando paredes verticales, donde anidan multitud de aves: Águila real, Buitre, Alimoche, Búho real, etc. Los aerogeneradores, posicionados en cotas altas, entre 968 y 702 msnm, distan entre 1 y 3,5 km, del núcleo urbano más próximo.

La geología del terreno pertenece a margas y calizas del Mioceno. En su superficie predomina la arcilla y cantos rodados del conglomerado preexistente. La zona presenta un claro dominio del relieve irregular, estando las inmediaciones ocupadas por formaciones de colinas y barrancos. La fisiografía es poco variada, uniforme en su disposición, pasando de rivera a cortados y colinas con desniveles de hasta 60m.

La vegetación predominante es el cereal de secano, con resquicios de la vegetación natural. En la vegetación autóctona, el matorral bajo ocupa la mayor parte, pero cuenta con teselas de carrascas o pino carrasco. Las especies más comunes son: *Genistas scorpius, Timus vulgaris, Rosmarinus officinalis, Lygeum spartum, Cistus albidus, Rosa canina, Quercus ilex, Pinus halepensis,* algo de *Quercus cocifera* y *Juniperus oxycedrus* y de forma aislada, hay algún ejemplar de *Pinus pinaster*. Los eriales o prados, proceden de campos de cultivo agrícolas abandonados.

En la zona en estudio se han inventariado diversas especies de herpetofauna, ornitofauna y mastofauna, aunque sin duda, son las aves las que mayor relevancia presentan. En numeroso cortados situados en las márgenes de los ríos, habitan numerosas especies rupícolas y lugar de anidamiento de rapaces como el águila real (*Aquila chrysaetos*), búho real (*Bubo bubo*), Cernícalo vulgar (*Falco tinnunculus*) y aves necrófagas como el buitre (*Gyps fulvus*) o el alimoche (*Neophron percnopterus*). Además, sus grandes extensiones de cultivos, alberga a multitud de especies esteparias, algunas de ellas, de gran importancia para su conservación.

Las malas condiciones climatológicas, principalmente los días nublados o niebla, aumentan la mortalidad de las aves (Kingsley y Whittam, 2007). Está ampliamente demostrado que las aves se sienten atraídas y desorientadas por las luces, especialmente en las noches nubladas o con niebla (Gauthreaux y Belser 2006). Estas condiciones ocasionan episodios puntuales de muerte por colisión,

no necesariamente relacionados con los desplazamientos naturales que realizan las aves en condiciones normales.

Para un mejor análisis de esta mortalidad, se debe recurrir a la dirección del viento predominante en la zona.

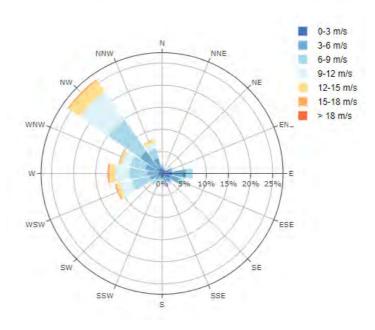


Figura 2. Rosa de los vientos. (Atlas Ibérico del viento).

2.2. DESCRIPCIÓN DEL AEROGENERADOR

En la siguiente tabla se indican las características de los aerogeneradores instalados y las especificaciones técnicas de la máquina según el fabricante:

DATOS GENERALES				
Fabricante	General Electric			
Turbina eólica	2.5xl			
Potencia	3.800 kW			
Diámetro	100 m			
Clase de viento	DIBt 2			
Área de barrido	7.854 m ²			
Densidad de potencia	3.15 m ² /kW			
Número de palas	3			
MASAS				
Masa De góndola	85 toneladas			
Masa de la torre	241 toneladas			
Masa del rotor	52 toneladas			
Masa total	378 toneladas			
ROTOR				
Velocidad mínima del rotor	5 vuelta/min			
Velocidad máxima del rotor	14,1 vuelta/min			
Fabricante	LM Glasfiber			
CAJA DE CAMBIOS				
Niveles	3			

DATOS GENERALES				
Ratio	1:117,4			
GENERADOR				
Tipo	DFIG			
Número	1			
Velocidad de salida máxima del generador	1650 vuelta/min			
Tensión de salida	690 V			
TORRE				
Altura mínima de la góndola	85 m			
Altura máxima de la góndola	130 m			

Tabla 2. Características de los aerogeneradores instalados.

3. SEGUIMIENTO DE AVIFAUNA Y QUIROPTEROFAUNA

3.1. METODOLOGÍA DEL SEGUIMIENTO DE AVIFAUNA

El objetivo de un plan de seguimiento sobre la avifauna y quiropterofauna en un parque eólico, es garantizar la viabilidad ambiental del proyecto mediante la realización de controles sobre las poblaciones de aves que habitan en la zona y/o aquellas que de alguna manera transitan por ella de forma estacional.

Los objetivos específicos de este trabajo de acuerdo con el Plan de Vigilancia Ambiental, son:

Control de colisiones de aves y quirópteros.

En los <u>aerogeneradores</u>: "Seguimiento de la mortalidad de aves; para ello, se seguirá el protocolo del Gobierno de Aragón, el cual será facilitado por el Instituto Aragonés de Gestión Ambiental. Se deberá incluir un test de detectabilidad y un test de permanencia de cadáveres. Se deberá dar aviso de los animales heridos o muertos que se encuentren, a los agentes de protección de la naturaleza de la zona, los cuales indicarán la forma de proceder. En el caso de que los agentes no puedan hacerse cargo de los animales heridos o muertos, el personal que realiza la vigilancia los deberá trasladar por sus propios medios al Centro de Recuperación de Fauna Silvestre de La Alfranca. Se remitirá, igualmente, comunicación mediante correo electrónico a la Dirección General de Sostenibilidad. Las personas que realicen el seguimiento deberán contar con la autorización pertinente a efectos de manejo de fauna silvestre".

En las <u>líneas de alta tensión</u>: "Se seguirá el protocolo metodológico propuesto para el seguimiento de la mortalidad de aves y quirópteros en los parques eólicos y líneas de evacuación del Gobierno de Aragón y que será facilitado por el INAGA. Se realizarán prospecciones a lo largo de la línea con una cadencia de, al menos, una prospección cada tres meses. Se comprobará también el estado de los materiales aislantes y de las balizas salvapájaros y, en su caso, el estado de las superficies restauradas (regeneración de la vegetación)".

Determinación de estimas de siniestralidad.

"Se deberán incluirían test de detectabilidad y permanencia de cadáveres con objeto de realizar las estimas de mortalidad real con la mayor precisión posible. Debe, asimismo, prestar especial atención a detectar vuelos de riesgo y cambios destacables en el entorno que puedan generar un

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

incremento del riesgo de colisiones. Igualmente, se deberán realizar censos anuales específicos de las especies de avifauna que se censaron durante la realización de los trabajos del EsIA y Adendas de avifauna, con objeto de comparar la evolución de las poblaciones antes y después de la puesta en marcha del parque eólico".

• Seguimiento del uso del espacio de avifauna en el entorno de las instalaciones

"Se realizará el seguimiento del uso del espacio en el parque eólico y su zona de influencia de las poblaciones de quirópteros y avifauna de mayor valor de conservación de la zona, prestando especial atención y seguimiento específico del comportamiento de las poblaciones de buitre leonado, águila perdicera, águila real, alimoche, chova piquirroja, milano real, sisón común, ganga ibérica, ganga ortega y avutarda, así como otras especies detectadas en la totalidad del área de la poligonal del parque eólico durante, al menos, los seis primeros años de vida útil del parque. Se aportarán las fichas de campo de cada jornada de seguimiento, tanto de aves como de quirópteros, indicando la fecha, las horas de comienzo y finalización, meteorología y titulado que la realiza".

A continuación, se describe la metodología seguida para la realización del seguimiento de fauna en la fase de explotación del parque eólico:

3.1.1. CALENDARIO DE TRABAJO

El trabajo se desarrolló en el periodo de tiempo comprendido entre los meses de mayo a abril de 2024, ambos inclusive.

El trabajo que se realiza consiste en: la evaluación del estado paisajístico modificado, el seguimiento de la mortandad y seguimiento de la fauna alar (aves y quirópteros); así como de conocer las interrelaciones de las especies con el entorno, evaluando sus conductas y las causas de los efectos producidos por los elementos antrópicos próximos. Todo ello, dentro del área de estudio de los aerogeneradores e instalaciones anexas y su entorno.

El nuevo protocolo de medioambiente indica que, en relación a la periodicidad de las visitas para el seguimiento de la mortandad de fauna en parques eólicos, "se establece como semanal la periodicidad de las prospecciones, desarrollándose en ciclos anuales completos".

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Además de las visitas marcadas por el protocolo para las revisiones de mortandad, se realizan visitas para la realización de otras tareas.

3.1.2. USO DEL ESPACIO POR LA AVIFAUNA EN LA ZONA DE ESTUDIO

El análisis del uso del espacio de la fauna se ha centrado en los grupos de las aves, debido a su mayor susceptibilidad ante este tipo de infraestructuras (colisión, ocupación del territorio, efecto vacío y alteración del comportamiento). A continuación, se seleccionaron aquellas que, por sus características y nivel de catalogación, han podido verse más afectadas por la implantación del parque.

Para prospectar la zona se han seguido los procedimientos más comúnmente empleados en este tipo de estudios, en los que el objetivo primordial es caracterizar la presencia/ausencia de especies, obteniendo en paralelo las pautas generales de distribución, uso del medio y densidades.

A partir de esta información se diseñó un método de muestreo de campo que se adaptara a las condiciones morfológicas de la zona de estudio, basado fundamentalmente en el estudio de la comunidad ornítica mediante transectos finlandeses y puntos de observación.

El inventario de fauna se ha obtenido a partir de las especies avistadas durante los transectos y puntos de observación, además de las observaciones en campo.

Todos los recorridos fueron realizados por técnicos cualificados especialistas en estudios de fauna, los cuales contaron con cartografía de detalle y Sistema de Posicionamiento mediante Navegador (GPS).

3.1.3. SEGUIMIENTO PERIÓDICO

Se ha realizado el seguimiento de avifauna centrando el esfuerzo de censo en las zonas de ubicación de cada aerogenerador y su camino de acceso, realizando la toma de datos en días soleados o con cielo parcialmente cubierto, pero sin comprometer en ningún caso los resultados por mala visibilidad del observador.

Para caracterizar la comunidad de aves con una envergadura inferior a 50 cm, se optó por los transectos finlandeses (Tellería, 1986). El objeto de éstos es determinar la densidad de aves por hectárea y los índices kilométricos de abundancia (IKAs) en las zonas próximas a la ubicación del aerogenerador. Para ello, se ha estimado una banda de 25 m a cada lado del observador y se

registraron todos los contactos por delante de la línea progresión, especificando si se encontraban dentro o fuera de la banda de 50 m.

El censo se realiza lentamente deteniéndose tantas veces como exija la correcta identificación y ubicación de las aves con respecto a la banda, y además se anotaron los siguientes datos:

- Identificación de especie.
- Nº de individuos.
- Localización dentro o fuera de banda.

De este modo, la diversidad muestra una estima de la riqueza obtenida en un parque, ponderada por los valores de abundancia de cada especie detectada.

Para este fin se fijaron un total de 6 recorridos, que fueron escogidos teniendo en cuenta los biotopos presentes, y así sacar valores de diversidad más representativas de la zona de estudio. A continuación, se describen las distintas unidades morfológicas (biotopos) representadas:

- T1: Campo de cultivo y carrascal próximo a corral abandonado.
- T2: Campos de cultivo y vegetación natural próximo a balsa naturalizada, en ladera.
- T3: Tomillar y campos de cultivo, próximo a barranco (especies rupícolas y vegetación de ribera).
- T4: Matorral alto, almendral y campos de cultivo, en barranco, próximo a corral en uso.

A continuación, se muestran los itinerarios de censo realizados, con su longitud y coordenadas UTM.

		UTM (ETRS 89)			
ITINERARIO DE CENSO	LONGITUD (m)	INICIO		FINAL	
		Х	Υ	Х	Υ
1C	992	664197	4566743	665036	4567056
2C	1065	666436	4568325	665968	4569239
1BE	1070	664922	4563922	664363	4564738
1A	1051	664825	4563133	663835	4563401

Tabla 4. Transecto de censo (en longitud) en el itinerario realizado.

Además, para rapaces y otras especies de tamaño medio o grande, se han realizado Puntos de Observación. Desde los mismos, se anotan las líneas de vuelo, con el objetivo de plasmar el uso del

espacio en la zona de estudio. Se ubicaron **7 puntos** de observación, desde los cuales todos los aerogeneradores eran visibles a menos de 1km, desde uno de estos puntos.

Puntos de	UTM (ETRS 89)		
observación	X	Υ	
PO 1	667651	4556400	
PO 2	667361	4554703	
PO 3	675840	4565371	
PO 4	674124	4563455	
PO 5	673719	4561817	
PO 6	663283	4561650	
PO 7	664885	4564678	

Tabla 5. Ubicación de los Puntos de observación realizados.

Para cada observación, se anotaron los siguientes datos:

- Hora de paso.
- Identificación de especie.
- Nº de individuos.
- Altura de vuelo:
 - Altura 1 (por debajo de la altura de barrido de las palas),
 - Altura 2 (la altura de barrido de las palas) y
 - Altura 3 (superior a la altura de barrido de las palas).
- Dirección de vuelo.
- Tipo de vuelo
 - Cicleo
 - Posado
 - Cernido

- Prospección
- Desplazamiento
- Dentro de bando
- Tiempo de observación

Mediante esta metodología se obtuvieron dos estimas de abundancia, una estima de la densidad de aves, expresada en nº de aves / 10 has obtenida de la siguiente fórmula:

$$D = \frac{n \cdot k}{L}$$

$$k = \frac{1 - \sqrt{1 - \rho}}{W}$$

Donde:

- n = nº total de aves detectadas.
- L = longitud del itinerario de censo.
- p = proporción de individuos dentro de banda con respecto al total.
- W = anchura de la banda de recuento a cada lado de la línea de progresión (en este caso 25 m).

Y un Índice kilométrico de abundancia (IKA), obtenido de dividir el total de aves observadas sin límite de distancia por la longitud del recorrido, que se expresa como nº de aves / km.

Para caracterizar en su conjunto a la comunidad ornítica, además, se obtuvo la **Riqueza** (nº de especies contactadas durante el itinerario de censo) y la **Diversidad**, calculada en base al índice de Shannon-Wienner, calculada según la siguiente fórmula (Margalef, 1982):

$$D=-\sum pi \times \log_2 pi$$

Donde:

• pi es la proporción el tanto por 1 de cada una de las especies detectadas.

En esta figura se muestra la ubicación de los Transectos y Puntos de Observación fijados para el estudio de la avifauna del parque eólico.

Figura 3. Transectos y Puntos de Observación fijados.

3.1.4. TRATAMIENTO DE DATOS Y COMUNICACIÓN A ORGANISMO AUTONÓMICO

Todos los datos obtenidos en las visitas realizadas se procesan mediante un Sistema de Información Geográfica que permite el análisis espacial de la información recopilada. Así, de los datos obtenidos en los puntos de observación, con el número de ejemplares avistados y el recorrido de su vuelo, se puede obtener la densidad de líneas de vuelo y por lo tanto las zonas con mayor riesgo de colisión.

La comunicación con los organismos autonómicos es continua.

- Cada día de visita para revisión de mortandad, se comunica previamente al coordinador de los agentes forestales de la comarca. Al finalizar, se remiten los datos digitalizados y georreferenciados de las colisiones detectadas, al mismo agente de protección de la naturaleza. En caso de encontrar una especie catalogada, se comunica inmediatamente mediante llamada. Garantizando el cumplimiento del protocolo metodológico de recogida de carcasas, se envía una tabla recopilando todos los datos recogidos hasta la fecha al departamento de Servicio Biodiversidad del Gobierno de Aragón, perteneciente a la Dirección General de Medio Natural y Gestión Forestal

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

- Con cierta periodicidad se realizan las retiradas de las aves recogidas en los congeladores por los técnicos ambientales en campo, que se llevan a cabo por mano de los Agentes de Medio Ambiente. Se adjuntan en los Anexos los listados de las especies retiradas.
- Fruto de esa comunicación continua con los Agentes de Protección de la Naturaleza, se ha dispuesto de más información respecto a las especies presentes.
- Para minimizar el impacto sobre la fauna se hallan instalados sistemas de disuasión en varios aerogeneradores de cada parque. En coordinación con la Administración se está informando el avance sobre los sistemas de detección y disuasión de DtBird. Del mismo modo que se cumple con las condiciones para la verificación de estos sistemas y funcionamiento en los aerogeneradores.
- Se mantendrá las reuniones correspondientes con la Administración cuando sea necesario.

El 8 de noviembre de 2023, tuvo lugar la reunión de la Comisión de Seguimiento Ambiental "Las Majas". En ella se expuso el trabajo realizado durante la vigilancia ambiental y la presentación de los datos de seguimiento de la avifauna y quiropterofauna, así como de la siniestralidad hallada hasta el momento.

3.1.5. DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL

Los periodos de visitas para el control de colisiones a los parques eólicos se rigen por dos periodicidades distintas en función de la época del año, tal como se recoge en las correspondientes Declaraciones de Impacto Ambiental:

Las Majas VII E:

"Se deberá aplicar la metodología habitual en este tipo de seguimientos revisando al menos 100 m alrededor de la base de cada uno de los aerogeneradores. Los recorridos de búsqueda de ejemplares colisionados han de realizarse a pie y su periodicidad debería ser al menos quincenal durante un mínimo de cinco años desde la puesta en funcionamiento del parque, y semanal en los periodos de migraciones. Además, considerando el riesgo más elevado en los aerogeneradores situados en posiciones más cercanas a los ríos Cámaras y Herrera (aerogeneradores números 3 y 5), los

seguimientos bajo ellos se ampliarán hasta los 150 m alrededor de la base de cada uno de los aerogeneradores y con periodicidad semanal durante todo el año.

• En todos los parques e instalaciones:

"Deberá evitarse de forma rigurosa el abandono de cadáveres de animales o de sus restos dentro o en el entorno del parque eólico, con el objeto de evitar la presencia en su zona de influencia de aves necrófagas o carroñeras. Si es preciso, será el propio personal del parque eólico quien deba realizar las tareas de retirada de los restos orgánicos. En el caso de que se detecten concentraciones de rapaces necrófagas debido a vertidos de cadáveres, prescindiendo de los sistemas autorizados de gestión de los mismos en las proximidades del parque eólico que pueda suponer una importante fuente de atracción para buitre leonado y otras rapaces, se pondrá en conocimiento de los Agentes de Protección de la Naturaleza, para que actúen en el ejercicio de sus funciones."

Fotografía 1. Rebaño de ovejas dentro del PE.

De acuerdo con lo especificado en el párrafo anterior, se tendrá en cuenta y se vigilará de forma especial el abandono de cadáveres, dado que en el parque eólico de "Las Majas VII E", existen explotaciones ganaderas ovinas.

3.2. CRONOLOGÍA DE LAS VISITAS REALIZADAS

El periodo de seguimiento objeto de evaluación del presente informe comprende los meses de mayo a agosto de 2024.

En este periodo se han realizado un total de 19 visitas, donde se han revisado las bases de los aerogeneradores y estudio y vigilancia de la avifauna y quiropterofauna presentes, siguiendo los Protocolos: *Protocolo metodológico propuesto para el seguimiento de aves y murciélagos* y el *Protocolo sobre recogida de cadáveres* (del 6 de noviembre de 2020) en parques eólicos y de las decisiones tomadas en la última Comisión de Seguimiento Ambiental, por parte del Gobierno de Aragón.

También se ha revisado y realizado un seguimiento para el cumplimiento de las medidas marcadas por las DIA, las cuales se han distribuido teniendo en cuenta el protocolo especificado en las instrucciones para la recogida de restos de animales en parques eólicos, facilitado por el Servicio de Medio Ambiente de la Delegación Territorial del Gobierno de Aragón.

A continuación, se expone la cronología de las visitas realizadas:

Nº visita	Fecha	Actividades realizadas	Siniestralidad
92	02/05/2024	Revisión LM7E Puntos de observación y transectos	-
93	08/05/2024	Revisión LM7E Puntos de observación y transectos	-
94	14/05/2024	Revisión LM7E Puntos de observación y transectos	Melanocorypha calandra
95	28/05/2024	Revisión LM7E Puntos de observación y transectos	Melanocorypha calandra
96	04/06/2024	Revisión LM7E Puntos de observación y transectos	•
97	11/06/2024	Revisión LM7E Puntos de observación y transectos	•
98	18/06/2024	Revisión LM7E Puntos de observación y transectos	•
99	20/06/2024	Retirada congeladores.	-
100	25/06/2024	Revisión LM7E Puntos de observación y transectos	-

Nº visita	Fecha	Actividades realizadas	Siniestralidad
101	02/07/2024	Revisión LM7E Puntos de observación y transectos	-
102	09/07/2024	Revisión LM7E Puntos de observación y transectos	-
103	16/07/2024	Revisión LM7E Puntos de observación y transectos	-
104	23/07/2024	Revisión LM7E Puntos de observación y transectos	-
105	30/07/2024	Revisión LM7E Puntos de observación y transectos	-
106	06/08/2024	Revisión LM7E Puntos de observación y transectos	-
107	13/08/2024	Revisión LM7E Puntos de observación y transectos	Hypsugo savii y Luscinia megarhynchos
108	20/08/2024	Revisión LM7E Puntos de observación y transectos	Falco naumanni
109	21/08/2024	Revisión LM7E Puntos de observación y transectos. Retirada congeladores.	-
110	28/08/2024	Revisión LM7E Puntos de observación y transectos	-

Tabla 6. Visitas realizadas durante cuatro meses.

3.2.1. TRATAMIENTO DE DATOS Y COMUNICACIÓN A ORGANISMO AUTONÓMICO

Todos los datos obtenidos en las visitas realizadas se procesan mediante un Sistema de Información Geográfica que permite el análisis espacial de la información recopilada. Así, de los datos obtenidos en los puntos de observación, con el número de ejemplares avistados y el recorrido de su vuelo, se puede obtener la densidad de líneas de vuelo y por lo tanto las zonas con mayor riesgo de colisión.

La comunicación con los organismos autonómicos es continua.

- Cada día de visita para revisión de mortandad, se comunica previamente al coordinador de los agentes forestales de la comarca. Al finalizar, se remiten los datos digitalizados y georreferenciados de las colisiones detectadas, al mismo agente de protección de la naturaleza. En caso de encontrar una especie catalogada, se comunica inmediatamente mediante llamada. Garantizando el cumplimiento del protocolo metodológico de recogida de carcasas, se envía una tabla recopilando todos los datos recogidos hasta la fecha al

departamento de Servicio Biodiversidad del Gobierno de Aragón, perteneciente a la Dirección General de Medio Natural y Gestión Forestal

- Con cierta periodicidad se realizan las retiradas de las aves recogidas en los congeladores por los técnicos ambientales en campo, que se llevan a cabo por mano de los Agentes de Medio Ambiente. Se adjuntan en los Anexos los listados de las especies retiradas.
- Fruto de esa comunicación continua con los Agentes de Protección de la Naturaleza, se ha dispuesto de más información respecto a las especies presentes.
- Para minimizar el impacto sobre la fauna se hallan instalados sistemas de disuasión en varios aerogeneradores de cada parque. En coordinación con la Administración se está informando el avance sobre los sistemas de detección y disuasión de DtBird. Del mismo modo que se cumple con las condiciones para la verificación de estos sistemas y funcionamiento en los aerogeneradores.
- Se mantendrá las reuniones correspondientes con la Administración cuando sea necesario.

3.3. RESULTADOS DEL ESTUDIO DE AVIFAUNA

3.3.1. USO DE ESPACIO DE TODAS LAS ESPECIES

En la tabla siguiente se exponen los datos referentes a todos los contactos obtenidos con las distintas especies, tanto desde los transectos como de los puntos de observación realizados durante este seguimiento, indicando el número de individuos detectados y el porcentaje que representan respecto del total.

NOMBRE COMÚN	NOMBRE CIENTÍFICO	Nº INDIVIDUOS	%
Mito	Aeigithalos caudatus	4	0,78%
Perdiz roja	Alectoris rufa	2	0,39%
Terrera común	Calandrella brachydactyla	8	1,57%
Jilguero	Carduelis carduelis	45	8,81%
Verderón	Chloris chloris	5	0,98%
Paloma torcaz	Columba palumbus	13	2,54%
Codorniz	Coturnix coturnix	5	0,98%
Curruca mirlona	Curruca hortensis	15	2,94%
Curruca cabecinegra	Curruca melanocephala	11	2,15%

NOMBRE COMÚN	NOMBRE CIENTÍFICO	Nº INDIVIDUOS	%
Curruca rabilarga	Curruca undata	5	0,98%
Escribano triguero	Emberiza calandra	48	9,39%
Escribano soteño	Emberiza cirlus	16	3,13%
Pinzón vulgar	Fringilla coelebs	19	3,72%
Cogujada montesina	Galerida theklae	51	9,98%
Gyps fulvus	Gyps fulvus	10	1,96%
Golondrina común	Hirundo rustica	12	2,35%
Zarcero políglota	Hypolais polyglota	19	3,72%
Alcaudón real	Lanius meridionalis	3	0,59%
Alcaudón común	Lanius senator	4	0,78%
Pardillo común	Linaria cannabina	75	14,68%
Alondra totovia	Lullula arborea	2	0,39%
Ruiseñor común	Luscinia megarhynchos	13	2,54%
Calandria común	Melanocorypha calandra	33	6,46%
Collaba rubia	Oenanthe oenanthe	1	0,20%
Oropendola	Oriolus oriolus	1	0,20%
Carbonero común	Parus major	12	2,35%
Gorrión común	Passer domesticus	8	1,57%
Colirrrojo tizón	Phoenicurus ochruros	2	0,39%
Mosquitero papialbo	Phylloscopus bonelli	1	0,20%
Mosquitero común	Phylloscopus collybita	3	0,59%
Picaraza	Pica pica	2	0,39%
Tarabilla común	Saxicola rubicola	1	0,20%
Verdecillo	Serinus serinus	26	5,09%
Tortola europea	Streptopelia turtur	19	3,72%
Mirlo común	Turdus merula	16	3,13%
Zorzal charlo	Turdus viscivorus	1	0,20%
TOTAL GENERAL		511	100,00%

Tabla 6. Contactos de aves realizados durante el estudio especies presentes.

Durante los cuatro meses de seguimiento se han observado un total de 511 ejemplares avistados de 36 especies distintas. Siendo las especies más comunes; el pardillo común (*Linaria cannabina*), el jilguero (*Carduelis carduelis*), Escribano triguero (*Emberiza calandra*), Cogujada montesina (*Galerida theklae*) y Calandria (*Melanocorypha calandra*).

Las observaciones durante este cuatrimestre han correspondido con la fenología de la época nupcial y migración postnupcial. Las especies predominantes son las del género carduelis (*Carduelis cannabina* y *Carduelis* carduelis), los aláudidos esteparios como la calandria común (*Melanocorypha calandra*), Cogujada montesina (*Galerida theklae*); la alondra común (*Alauda arvensis*) y la terrera

común (*Calandrella brachydactyla*) dependiendo de la época; así como otras como el escribano triguero (*Emberiza calandra*. Entre las aves de gran envergadura destaca el buitre leonado (*Gyps fulvus*). Como especies de ejemplares estival está la bisbita campestre (*Anthus campestris*).

El ecosistema donde están ubicados estos parques corresponde al hábitat de especies esteparias, aves actualmente en declive. En este periodo de estudio, se ha datado la presencia de especies catalogadas en Aragón, como la Alondra común (*Alauda arvensis*) "Interés Especial" y el Milano real (*Milvus milvus*) como en "Peligro de Extinción" (Decreto 129/2022, del Gobierno de Aragón).

Por otro lado, no hay que olvidar el uso del espacio que los mamíferos terrestres hacen de la zona, pudiéndose comprobar la presencia de conejo silvestre (*Oryctolagus cuniculus*), la liebre (*Lepus europaeus*), zorro rojo (*Vulpes vulpes*), tejón (*Meles meles*), corzo (*Capreolus capreolus*), cabra montesa (*Capra pyrenaica*), jabalí (*Sus scrofa*), garduña (*Martes foina*) y comadreja (*Mustela nivalis*), detectados mediante rastros o el avistamiento directo e indirecto.

Fotografía 2. Tejonera.

3.3.2. CENSO DE AVIFAUNA

Los transectos lineales seleccionados han sido recorridos a lo largo del periodo de seguimiento, durante el periodo que corresponde este cuatrimestre. Los transectos se realizaron en días donde la visibilidad fuera suficiente y donde las condiciones meteorológicas permitirán el vuelo normal de las aves.

ESPECIE	1er CUATRIMESTRE					
	D (nº aves/10 ha)	IKA (nº aves/km)				
Alectoris rufa	0,000	0,239				
Anthus pratensis	0,000	0,239				
Carduelis carduelis	0,185	11,728				

ESPECIE	1er CUATRIMESTRE					
	D (nº aves/10 ha)	IKA (nº aves/km)				
Chloris chloris	0,042	1,675				
Columba livia	0,000	0,239				
Columba palumbus	0,010	0,239				
Emberiza calandra	0,070	4,787				
Emberiza cia	0,000	0,239				
Emberiza cirlus	0,019	0,479				
Erithacus rubecula	0,010	0,239				
Fringilla coelebs	0,019	0,957				
Galerida theklae	0,029	2,154				
Linaria cannabina	0,413	27,286				
Melanocorypha calandra	0,016	2,633				
Paser domesticus	0,000	0,239				
Phoenicurus ochruros	0,000	0,479				
Phylloscopus trochilus	0,000	0,239				
Saxicola rubicola	0,000	0,479				
Serinus serinus	0,019	0,479				
Sylvia	0,000	0,479				
Sylvia melanocephala	0,036	2,154				
Turdus merula	0,024	1,436				
Turdus philomelos	0,010	0,239				
TOTAL	0,901	59,359				
RIQUEZA	23					
DIVERSIDAD	2,757					

Tabla 7. Valores de densidad de aves por hectárea, índices kilométricos de abundancia (IKAs), riqueza y diversidad. 1er Cuatrimestre 2024.

FCDFCIF	2º CUATRIMESTRE					
ESPECIE	D (nº aves/10 ha)	IKA (nº aves/km)				
Aeigithalos caudatus	0,038	0,957				
Alectoris rufa	0,019	0,479				
Calandrella brachydactyla	0,016	2,393				
Carduelis carduelis	0,000	10,771				
Chloris chloris	0,000	1,197				
Columba palumbus	0,124	3,112				
Coturnix coturnix	0,048	1,197				
Curruca hortensis	0,053	3,590				
Curruca melanocephala	0,010	2,633				
Curruca undata	0,018	1,197				
Emberiza calandra	0,090	11,489				
Emberiza cirlus	0,068	3,830				
Fringilla coelebs	0,020	4,548				

FCDFCIF	2º CUATRIMESTRE					
ESPECIE	D (nº aves/10 ha)	IKA (nº aves/km)				
Galerida theklae	0,146	12,207				
Gyps fulvus	0,096	2,393				
Hirundo rustica	0,021	2,872				
Hypolais polyglota	0,026	4,548				
Lanius meridionalis	0,012	0,718				
Lanius senator	0,011	0,957				
Linaria cannabina	0,109	17,951				
Lullula arborea	0,019	0,479				
Luscinia megarhynchos	0,033	3,112				
Melanocorypha calandra	0,089	12,685				
Oenanthe oenanthe	0,010	0,239				
Oriolus oriolus	0,010	0,239				
Parus major	0,041	2,872				
Passer domesticus	0,077	1,915				
Phoenicurus ochruros	0,019	0,479				
Phylloscopus bonelli	0,010	0,239				
Phylloscopus collybita	0,029	0,718				
Pica pica	0,019	0,479				
Saxicola rubicola	0,010	0,239				
Serinus serinus	0,000	6,223				
Streptopelia turtur	0,043	4,548				
Turdus merula	0,010	3,830				
Turdus viscivorus	0,010	0,239				
TOTAL	1,352	127,573				
RIQUEZA	3	6				
DIVERSIDAD	4,358					

Tabla 8. Valores de densidad de aves por hectárea, índices kilométricos de abundancia (IKAs), riqueza y diversidad. 2º Cuatrimestre 2024.

Como se puede observar en la tabla, el presente cuatrimestre de seguimiento se ha contabilizado un total de 36 especies diferentes.

La diversidad en la zona se ha calculado según el índice de Shannon o índice de Shannon-Wiener, este índice se usa en ecología para medir la biodiversidad. Este índice contempla la cantidad de especies presentes en el área de estudio (riqueza de especies), y la cantidad relativa de individuos de cada una de esas especies (abundancia) y se expresa con un número positivo, que en la mayoría de los ecosistemas naturales varía entre 0 y 5 aunque no tiene límite superior. Los ecosistemas con mayores valores son los bosques tropicales y los arrecifes de coral, y los menores las zonas desérticas. Los datos

de los tres transectos se han calculado conjuntamente para obtener unos índices homogéneos de las especies del parque en estudio.

Fotografía 3. Alcaudón común (Lanius senator) dentro del PE.

En la siguiente figura se indica el valor numérico de individuos de cada especie en la zona de estudio:

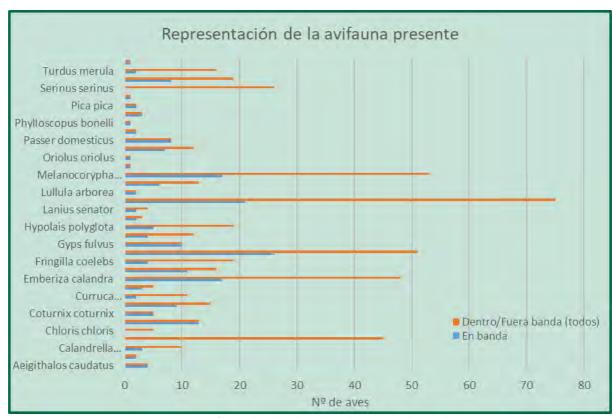


Figura 4. Número de individuos de cada especie observadas.

Figura 5. Representatividad del número de cada especie observada.

Como puede observarse en la figura, son tres especies las que representan más del 50% de los individuos avistados pertenecen a las especies: *Emberiza calandra, Galerida theklae, Melanocorypha calandra, Carduelis carduelis y Linaria cannbina.*,

3.3.3. ESTUDIO DE LOS VUELOS DE AVES DE GRAN ENVERGADURA

En la siguiente tabla se expone las especies vistas desde los puntos de observación, anotando como líneas de vuelo, durante el periodo correspondiente a este cuatrimestre.

NOMBRE COMÚN	ESPECIE	NÚMERO DE VUELOS	%
Rapaz sp	Accipitriforme sp	3	1,1%
Busardo ratonero	Buteo buteo	1	0,4%
Culebrera europea	Circaetus gallicus	14	5,0%
Aguilucho lagunero	Circus aeruginosus	3	1,1%
Corneja negra	Corvus corone	4	1,4%
Grajilla	Corvus monedula	1	0,4%
Cernícalo primilla	Falco naumanni	16	5,8%
Cernícalo sp	Falco sp	27	9,7%
Cernícalo vulgar	Falco tinnunculus	4	1,4%

NOMBRE COMÚN	ESPECIE	NÚMERO DE VUELOS	%
Buitre leonado	Gyps fulvus	175	62,9%
Águila calzada	Hieraaetus pennatus	5	1,8%
Abejaruco	Merops apiaster	15	5,4%
Milano negro	Milvus migrans	7	2,5%
Alimoche	Neophron percnopterus	2	0,7%
Abejero europeo	Pernis apivorus	1	0,4%
Total	general	278	100

Tabla 9. Aves de gran envergadura presentes, avistadas durante el estudio del uso del espacio.

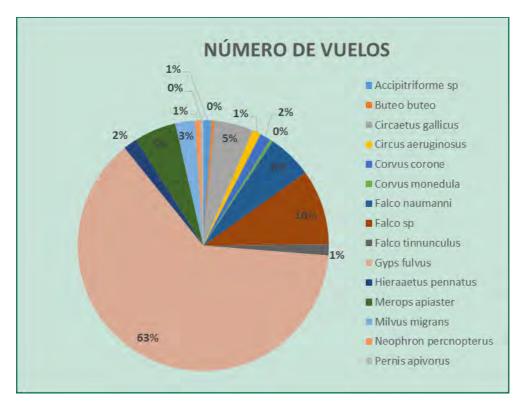


Figura 6. Aves de gran envergadura presentes en la zona de estudio.

Las especies más abundantes en la zona de estudio durante este cuatrimestre han sido los buitres leonados, estos últimos haciendo uso del espacio durante todo el año. El resto de aves, son avistamientos puntuales de otras rapaces que realizan prospección o en migración por la zona de estudio (caso del milano negro). Se han seguido observando la presencia del cernícalo vulgar (*Falco tinnunculus*) ha sido detectado en varias zonas del área de estudio. Cabe destacar la presencia del cernícalo primilla (*Falco naumanni*), la culebrera europea (*Circaetus gallicus*), el águila calzada (*Hieraaetus pennatus*) y el alimoche (*Neophron percnopterus*).

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Los estudios más recientes apuntan en la dirección de que la mortalidad no depende tanto de la densidad de aves en la zona como de la ubicación de cada uno de los aerogeneradores o "microssiting", estando, por tanto, más relacionados con el comportamiento de vuelo específico de las especies presentes, el clima y la topografía, pudiendo ser estos factores más importantes para explicar las diferencias en las tasas de mortalidad que la propia densidad de aves en general (De Lucas et al., 2008).

Según esto, la presencia en la zona de aves planeadoras, hace que las tasas de mortalidad aumenten al ser las más susceptibles a estas infraestructuras ya que poseen una menor capacidad de maniobra y dependen de las corrientes de aire existentes para sus desplazamientos (Tucker, 1971; Orloff y Flannery, 1993; Thelander, Smallwood y Rugge, 2003; Barrios y Rodríguez, 2004; Drewitt y Langston, 2006). En la zona de estudio, el 62% de los vuelos, corresponden a buitres en su mayoría en vuelos de desplazamiento y cicleo.

A continuación, se muestra los tipos de vuelos usados por cada especie, de los vuelos anotados:

ECRECIE	TIPO DE VUELO									
ESPECIE	Cernido	Cicleo	Desplazamiento	Posado	Prospección	Total general				
Accipitriforme sp	-	-	1	-	2	3				
Buteo buteo	-	-	1	-	-	1				
Circaetus gallicus	2	1	10	-	1	14				
Circus aeruginosus	-	-	1	-	2	3				
Corvus corone	-	-	-	4	-	4				
Corvus monedula	-	-	-	1	-	1				
Falco naumanni	-	-	-	3	13	16				
Falco sp	24	1	-	-	2	27				
Falco tinnunculus	-		-	-	4	4				
Gyps fulvus	-	113	24	5	33	175				
Hieraaetus pennatus	-	2	-	-	3	5				
Merops apiaster	-	15	-	-	-	15				
Milvus migrans	-	1	2	-	4	7				
Neophron percnopterus	-	-	-	-	2	2				
Pernis apivorus	-	-	1	-	-	1				
Total general	26	133	40	13	66	278				
Porcentaje (%)	9%	48%	14%	5%	24%	100%				

Tabla 10. Tipos de vuelo en las aves de gran envergadura presentes, avistadas durante el estudio del uso del espacio.

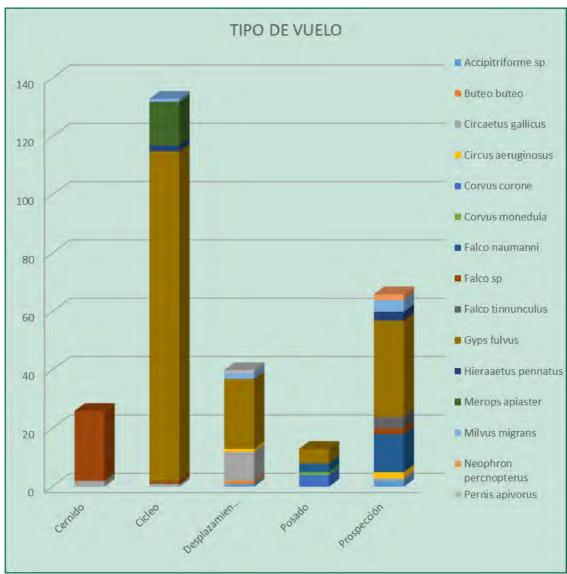


Figura 7. Tipo de vuelos por especies.

Figura 8. . Tipo de vuelos.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

La gran mayoría corresponden a vuelos de cicleo representado mayoritariamente por el buitre leonado (*Gyps fulvus*). También hay un gran número de vuelos en prospección representados en su mayor parte por buitres leonados (*Gyps fulvus*) y cernícalos primillas (*Falco naumanni*).

El buitre leonado es la especie más abundante, realizando en su mayoría vuelos de cicleo, este tipo de vuelo en la zona de estudio, se suele dar en vuelos que implican un desplazamiento, lo que se desprende que se trata de una especie con un uso extenso del espacio de vuelo durante su trayectoria de desplazamiento.

Los tipos de vuelo "prospección" señalan un uso intenso del espacio. La "prospección" está representada mayoritariamente por rapaces de pequeña y mediana envergadura, como el cernícalo vulgar (*Falco tinnunculus*), aguiluchos (*Circus cyaneus y Circus aeruginosus*), el águila culebrera (*Circaetus gallicus*) y milano real (*Milvus milvus*). Esta actitud de prospección, en caso de los cernícalos y aguiluchos, suelen realizarlo a una altura de vuelo por debajo de altura de palas o en el radio inferior de barrido. El milano real y el ratonero, sin embargo, realizan el vuelo de prospección a altura de barrido, en la mitad superior del diámetro de las palas; el águila real y el buitre, su prospección son a gran altura, por encima de barrido. Por último, los vuelos en "Cernido" muy habitual en los cernícalos, pero que en este caso está representados el cernícalo vulgar (*Falco tinnunculus*) y la culebrera europea (*Circaetus gallicus*).

Mencionar que las aves representadas en "Posado" son en su mayoría aves que realizan un uso del espacio para prospectar y se posan en arbolado o torres de alta tensión para otear el terreno.

Para las aves planeadoras, que dependen de las corrientes térmicas para desplazarse, la dirección del vuelo puede indicar la dirección de estar corrientes, que habitualmente depende de la orografía del terreno, y por lo tanto nos indicaría rutas habituales de desplazamiento de estas aves. También nos indica la dirección de vuelo de las aves migradoras. Por otro lado, aves más pequeñas, utilizan mayoritariamente la fuerza de sus alas para desplazarse y tomar trayectorias independientes de dichas corrientes térmicas. No obstante, estas aves también tienen rutas habituales de desplazamiento y campeo, que variará en función de la época del año y la disponibilidad de alimento.

A continuación, se muestra la dirección de vuelo de las especies avistadas:

		DIRECCIÓN										
ESPECIE	E	NE	N	NO	NW	S	SE	so	sw	w	Sin dirección	Total general
Accipitriforme sp	1	-	-	-	-	-	-	-	-	2	-	3
Buteo buteo	-	-	-	-	-	1	-	-	-	-	-	1
Circaetus gallicus	5	-	-	-	-	-	1	-	2	5	1	14
Circus aeruginosus	-	-	-	-	-	-	2	-	-	-	1	3
Corvus corone	-	-	-	-	-	-	-	-	-	-	4	4
Corvus monedula	-	-	-	-	-	-	-	-	-	-	1	1
Falco naumanni	-	-	-	-	-	-	13	-	-	-	3	16
Falco sp	4	1	16	-	-	-	-	-	-	-	6	27
Falco tinnunculus	-			-	-	-	4	-	-	-	-	4
Gyps fulvus	1	4	2	2	2	3	1	5	1	57	97	175
Hieraaetus pennatus	-	1	1	-	-	1	-	-	-	-	2	5
Merops apiaster	1	-	-	-	-	14	-	-	-	-	-	15
Milvus migrans	-	-	-	-	1	-	-	-	-	2	4	7
Neophron percnopterus	-	-	-	-	-	-	1	-	-	-	1	2
Pernis apivorus	-	-	-	-	-	1	-	-	ı	1	-	1
Total general	12	6	19	2	3	20	22	5	3	66	120	278
Porcentaje (%)	4,32	2,16	6,83	0,72	1,08	7,19	7,91	1,80	1,08	23,74	43,17	100,00

Tabla 11. Porcentaje de las direcciones tomadas por las aves de gran envergadura presentes, avistadas durante el estudio del uso del espacio.

Figura 9. Vuelos observados según dirección y especie

Figura 10. Vuelos observados según dirección

Las direcciones de vuelo son muy variadas, dependen de los tipos de vuelo y de la actividad que estén realizando. No obstante, en la zona de estudio, el ave más abundante es el buitre leonado, que realiza desplazamientos en dirección W mayoritariamente.

La altura de vuelo de las aves de gran envergadura o planeadoras está condicionada por el tipo de corriente que estén utilizando (térmicos ascendentes, de ladera o convergentes) y del propósito del vuelo (desplazarse, posarse, ascender o prospectar). Si al propósito del vuelo, no acompaña una corriente adecuada, estas recurren al batido de alas. Esta forma de volar es más utilizada por las aves de envergadura media o pequeña. Cuando soplan vientos moderados o fuertes, desplazan a las aves planeadoras, en la dirección en la que sopla. Por tanto, los aerogeneradores representan riesgo de colisión para las aves, ya que dependen de las condiciones meteorológicas y tipo de corrientes, haciéndolas poco ágiles en vuelo.

A continuación, se muestran las especies avistadas en campo y clasificadas según la altura de su vuelo, asociando un valor de riesgo para cada altura:

	Riesgo							
Especie	1	2	3	4	Total general			
Accipitriforme sp	-	-	-	3	3			
Buteo buteo	-	-	-	1	1			
Circaetus gallicus	-	-	-	14	14			
Circus aeruginosus	-	-	-	3	3			
Corvus corone	-	4	-	-	4			
Corvus monedula	-	1	-	-	1			
Falco naumanni	-	3	-	13	16			
Falco sp	-	-	2	25	27			
Falco tinnunculus	4	=	-	-	4			
Gyps fulvus	131	5	2	37	175			
Hieraaetus pennatus	3	-	-	2	5			
Merops apiaster	1	-	-	14	15			
Milvus migrans	4	-	-	3	7			
Neophron percnopterus	1	-	-	1	2			
Pernis apivorus	-	-	-	1	1			
Total general	143	13	4	115	278			
Porcentaje (%)	51,44%	4,68%	1,44%	41,37%	100,00%			

Tabla 12. Altura de riesgo de las aves de gran envergadura presentes, avistadas durante el estudio del uso del espacio.

La mayor parte de los vuelos se realizaron a una altura de riesgo 1 (51,44%), de ese porcentaje el 91% fueron buitres leonados (*Gyps fulvus*). El 41,37% de los vuelos se encontraban a una altura de riesgo 4, siendo el 32% realizado por el buitre. Los vuelos de cernícalo primilla (*Falco naumanni*) también se

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

registraron en su mayoría a riesgo 4. Observamos que la mayoría de las especies han realizado sus vuelos a riesgo 4. No obstante, no todas las aves conllevan el mismo riesgo real de colisión, siendo el buitre leonado la principal rapaz con mayor número de siniestros sufridos.

Algunos factores relacionados con el comportamiento de vuelo de las especies aumentan o disminuyen las tasas de mortalidad, ya que, con una débil potencia de vuelo, el buitre leonado, depende en gran medida del viento para elevarse por encima de las turbinas (Pennycuick, 1975). Los vientos que ayudan a los buitres a elevarse, provienen de dos fuentes principales: las corrientes de aire que se elevan gracias a las laderas y las corrientes térmicas (Pennycuick, 1998), por lo que es de esperar, que las colisiones sean más probables cuando los vientos de elevación son más débiles. La debilidad de las corrientes de aire ascendentes que se dan, durante el invierno cuando las corrientes térmicas son menos frecuentes debido a las bajas temperatura del suelo, así como las corrientes ascendentes de pendientes suaves cuando corre poco viento, hacen que las turbinas situadas en la parte superior de estas suaves pendientes presenten un riesgo mayor para los buitres leonados y otras aves planeadoras.

Este hecho lleva a relacionar los 3 factores comentados anteriormente (especie, clima y topografía), siendo por tanto sumatorios; de forma que si tenemos en una zona aves planeadoras (como por ejemplo los buitres), nieblas densas habituales y/o vientos flojos y una topografía con relieves suaves, hace que la tasa de mortalidad aumente considerablemente.

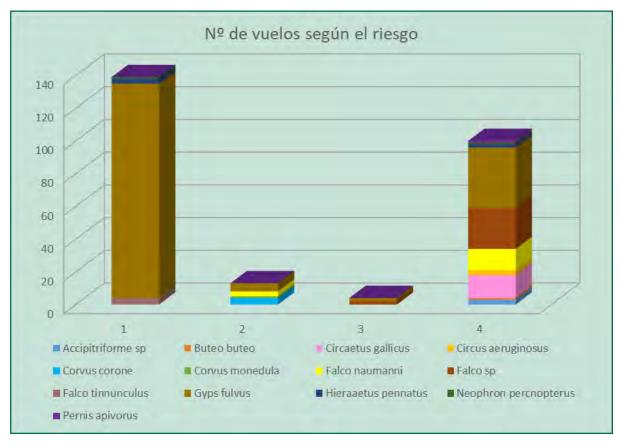


Figura 11. Intensidad del riesgo por alturas, y especies.

Como se mencionaba anteriormente, las aves que entrañan mayor riesgo según la altura de su vuelo, son las aves en que realizan vuelos en "prospección" y "cernido". Además, las aves planeadoras que se desplazan mediante corrientes térmicas, como es el caso del buitre leonado. También, las aves en migración son un grupo vulnerable.

3.4. ESTUDIO DE RIESGO PARA LAS AVES

Con este estudio se pretende cuantificar el riesgo de las aves ante las infraestructuras eólicas, valorando distintos aspectos y características de las especies que reflejan la vulnerabilidad de la especie. El análisis se realiza mediante la aplicación de dos índices que miden el riesgo de colisión para cada especie; utilizando los datos recogidos en el estudio de avifauna tomados durante los transectos lineales y puntos de observación.

3.4.1. METODOLOGÍA ESTUDIO DE RIESGO PARA LAS AVES

El *Índice de Sensibilidad para Aves (ISA),* mide el riesgo relativo de sufrir accidentes para cada una de las especies de aves detectadas en función de una serie de parámetros referidos a pautas de

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

comportamiento de los individuos en la zona de estudio (tipo de vuelo, altura de vuelo), aptitudes para el vuelo de la especie (carga alar, aspecto alar), estacionalidad, tamaño poblacional, estado de conservación y capacidad reproductora. Se calcula para cada especie detectada en el estudio de trayectorias. Las especies con mayor sensibilidad son buitre leonado, alimoche, milano real y buitre

Es decir, es un índice que pondera los factores más importantes recogidos por estudios recientes, acerca del riesgo de colisión para aves en parques eólicos.

- El índice se calcula para cada especie detectada en el estudio de trayectorias.
- El índice de cada especie está relacionado con cada una de las zonas en que se dividió el área de estudio (ver mapa I). Una especie puede tener distinto índice de sensibilidad entre zonas, dependiendo de factores inherentes al comportamiento predominante de esa especie en una zona determinada: tipo de vuelo, altura de vuelo, etc.
- Los datos utilizados son los obtenidos mediante el trabajo de campo específico de trayectorias.
- Para el cálculo del ISA se seleccionaron 7 factores que se valoraron de 1 a 4 (1: menor vulnerabilidad, 4: mayor vulnerabilidad).

$$ISA = \frac{(A+B+C1+C2+D)}{5} \times \frac{(E+F+G)}{3}$$

Α	Tipo de vuelo	1.	Posado (en el momento del avistamiento)
		2.	Vuelo en ladera (desplazamiento paralelo a la
			ladera)
		3.	Vuelo de cruce (atraviesa la creta o cumbre,
			perpendicular a la ladera)
		4.	Cicleo (vuelos circulares en térmicas o en
			prospección intensa)
В	Altura de vuelo (AEG 3,8 MW; Altura 85	1.	> 150 m (punto alto aspa)
	m; Diámetro de rotor: 130 m)		

39

			3.	0 - 5 m (por debajo de 15 m del punto más bajo de las palas) 16 - 20 (punto más bajo de palas y 15 por debajo); 150 - 165 m (punto más alto de las palas y 15 por encima) 20 - 150 (rango del giro de las palas)
C	Maniobrabilidad	C1 carga alar C2 aspecto alar	1. 2. 3. 4. C2: (Env 1. 2.	asa g / Superficie alar cm ²) <0,29 g/cm ² 0,29 – 0,39 g/cm ² 0,40 – 0,70 g/cm ² >0,70 g/cm ² ergadura cm / Masa g) >0,29 cm/g 0,29 – 0,18 cm/g 0,17 – 0,09 cm/g < 0,09 cm/g
D	Estacionalidad		1. 2. 3. 4.	Especies raras o divagantes Migrantes no reproductoras Invernantes o migrantes reproductoras Residentes
E	Tamaño de la pob	llación en Europa	3.	> 9,14 (>100.000) 8,87 - 9,14 (30.000-100.000) 7,39 - 8,26 (10.000-30.000) < 7,39 (< 10.000)
F	Estado de Conser de las aves de Esp		1. 2. 3. 4.	Preocupación menor LC No evaluado (ocasional o rareza) NE Casi amenazado NT Vulnerable o en Peligro VU, EN, CR

G	Capacidad reproductora	1. > 4 huevos
		2. 3 – 4 huevos
		3. 2 huevos
		4. 1 huevo

Tabla 15. Tabla metodología ISA.

El *índice de Vulnerabilidad Espacial (IVE)* se calcula a partir del ISA, teniendo en cuenta el número total de observaciones de cada especie. Pondera en cada sector la abundancia de cada una de las especies y la presencia de especies muy abundantes (buitre leonado) frente a otras esporádicas. El resultado final de la aplicación de este índice es una sectorización de la zona de estudio en zonas con diferente nivel de riesgo por colisión para aves. De este modo, pueden identificarse de manera objetiva las ubicaciones potencialmente peligrosas y el nivel de riesgo relativo.

$$IVE = \sum_{1}^{n} (\ln (\rho_i + 1) * ISA_i)$$

Donde:

- ρ_i es el número de observaciones para especie i para la misma cuadrícula UTM
- RSI el valor calculado del índice de sensibilidad de aves.

De esta manera se obtiene un valor que cuantifica el riesgo en una posición concreta, de acuerdo a las especies observadas.

Se considera los grados de riesgo de acuerdo a las siguientes franjas de valores, propuestos por Noguera et al. 2010:

IVE < 50 RIESGO BAJO	50 > IVE > 75 RIESGO MODERADO	IVE > 75 RIESGO ALTO				
Tabla 16. Caracterización del IVE.						

Cabe decir que un requisito para el uso de este índice, ha sido su utilización para zonas concretas y no para áreas donde el flujo de especies no sea homogéneo.

3.4.2. RESULTADOS ISA E IVE

Se ha calculado estos índices para aquellas posiciones de aerogeneradores donde, por la morfología del terreno y ubicación de estos, los vuelos de las aves van condicionados por estos factores y por lo tanto siguen una tendencia.

En la siguiente tabla se muestran los valores por especie utilizados, de las observaciones tomadas en el parque de Las Majas VII E, para todas sus posiciones.

ESPECIES	n	ВА	١,	C1	C2	D	E	F	G	ISA	Grado Sensibilidad
Circaetus gallicus	3	2 2	2	1	2	3	3	2	4	5,80	Bajo
* Falco sp	18	3 3	3	1	1	3	3	4	2	6,80	Moderado
Gyps fulvus	30	2 2	2	4	4	2	2	1	4	6,67	Moderado
Hieraaetus pennatus	2	4 4	ı	1	3	3	3	1	3	7,00	Moderado
Milvus migrans	1	2 1	L	3	3	3	1	1	1	2,40	Bajo

Tabla 17. Valores para el cálculo del ISA, para todos los vuelos observados. (*Falco sp se ha calculado con los valores de la especie de Falco naumanni)

Debido al avistamiento de varios ejemplares de cernícalo primilla (*Falco naumanni*) en la misma fecha y zona, que se trata de una especie sensible, y que tienen características físicas muy similares con el cernícalo vulgar, se han considerado para los cálculos todos los vuelos de *Flaco sp* tratarlos como *Falco naumanni*. De esta manera el grado de sensibilidad abarca a ambas especies.

A continuación, se tiene en cuenta la línea de aerogeneradores de todo el parque eólico Las Majas VII E, donde los desplazamientos de buitre son muy habituales, a menudo aprovechándose de corrientes de ladera.

Grado de sensibilidad	LM7C
Alto	0
Moderado	50
Bajo	4
Total general	54

Tabla 18. Índice ISA para las posiciones de vuelos de los aerogeneradores LM7E.

Como se puede observar, de acuerdo con los tipos de vuelos y el grado de vulnerabilidad de cada especie, el índice se sensibilidad general para las especies presentes en este parque, es mayoritariamente "Moderado.

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

El valor IVE mide el grado de vulnerabilidad de una zona, valorando el índice ISA y la abundancia. El resultado de este índice ha sido "Moderado": IVE = 60

3.4.3. USO DEL ESPACIO DE AVES DE GRAN ENVERGADURA

Un efecto común a todo tipo de infraestructuras sobre las comunidades faunísticas, es la fragmentación de los hábitat mediante la apertura de caminos o zanjas y la instalación de tendidos eléctricos o alineaciones de aerogeneradores, lo que origina, además de la pérdida de poblaciones animales concretas (aquellas que habitan en el lugar de la instalación) por el "efecto vacío", una disminución del flujo entre poblaciones cercanas debido al "efecto barrera" (Robinson, 1991; Rodríguez & Crema, 2000). Estos cambios en el medio tienen, así mismo, un efecto positivo para otras especies más generalistas y propias de ambientes humanizados.

El estudio del uso del espacio, y en comparación con el uso del espacio anterior a la instalación de las infraestructuras, ayudará a conocer para qué especies ha habido pérdida de hábitat y a estimar lo que supondrá para las poblaciones en el largo plazo.

Uno de los datos interesantes recogidos durante las visitas efectuadas, es la identificación de zonas de concentración de riesgo. Esta distribución de zonas se ha obtenido mediante el cálculo de la densidad del uso del espacio por las aves a partir de las líneas de vuelo, que han sido digitalizadas e integradas en un Sistema de Información Geográfica (SIG). De esta manera se ha obtenido las siguientes figuras.

Durante este cuatrimestre, los buitres siguen siendo la especie dominante. Las grandes rapaces hacen un uso amplio del espacio y con menor predisposición a seguir rutas predeterminadas. Cabe destacar el paso en migración de cernícalo primilla (*Falco naumanni*).

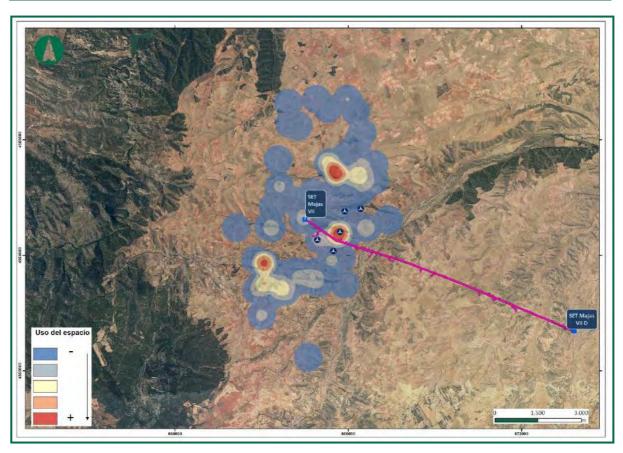


Figura 12. Intensidad del uso del espacio por las aves de gran envergadura detectadas.

Durante este cuatrimestre, el uso del espacio lo ha predominado el buitre leonado, que se concentran en las posiciones próximas al barranco del río Herrera.

El resto de rapaces presentes que han sido observadas son: el milano negro (*Milvus migrans*), aguilucho lagunero (*Circus aeruginosus*), culebrera (*Circaetus gallicus*), ernícalo vulgar (*Falco tinnunculus*), cernícalo primilla (*Flaco naumanni*) y grajilla (*Corvus monedula*). Únicamente el cernícalo vulgar y la corneja son observadas durante todo el año, siendo el cernícalo la especie con mayor concentración en pequeñas zonas de caza. El cernícalo primilla, se han visto únicamente en su paso migratorio post-nupcial.

3.4.3.1. Buitre leonado (Gyps fulvus)

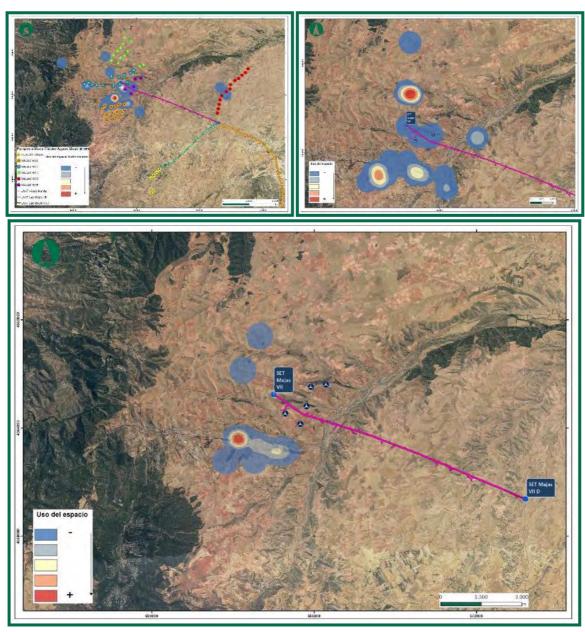


Figura 13. Intensidad del uso del espacio de buitre leonado (Gyps fulvus), 2º cuatrimestre 2021. Figura 14. Intensidad del uso del espacio de buitre leonado (Gyps fulvus), 2º cuatrimestre 2022.

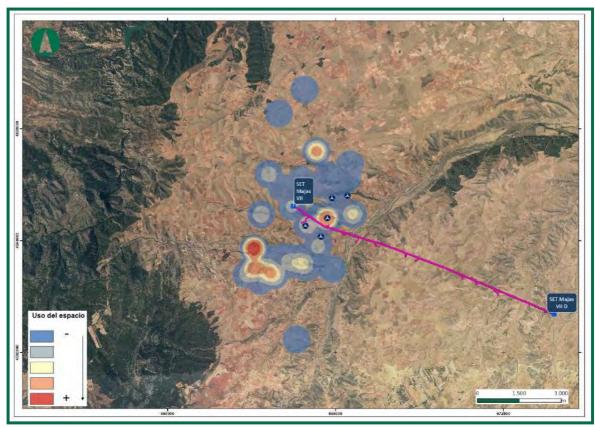


Figura 16. Intensidad del uso del espacio de buitre leonado (Gyps fulvus), 2º cuatrimestre 2024.

Los avistamientos de buitre se concentran en zonas de paso habitual, aprovechado que las condiciones meteorológicas son favorables. Estos mantienen las rutas de desplazamientos observados hasta ahora: desplazamientos E-W sobre el río Herrera.

Siendo las rutas de desplazamientos, las mismas que hasta ahora, los barrancos de los ríos Herrera, próximos a LM7A-01, LM7A-02, LM7A-06 y LM7A-03, rodeando la parte norte del parque. Los cruces se han dado en menor frecuencia.

En comparación con los cuatrimestres de los años anteriores, se observa que los vuelos del buitre siguen la misma distribución, haciendo uso del espacio sobre todo sobre el río de Herrera y los otros barrancos. Realizan cicleos o algunos desplazamientos hacia el interior de los parques eólicos. También, se observa como los buitres hacen uso de las paredes en el río Cámaras.

Al este de las posiciones, se encuentra varios posaderos y nidificaciones de esta especie. Sus vuelos, a menudo, se dirigen hacia el oeste.

Fotografía 4. Buitre leonado (Gyps fulvus) sobre talud situado enfrente a la posición LM7A-05.

Fotografía 5. Cadáver de ovejas abandonado cerca de una de las posiciones.

El abandono de piezas dentro del parque eólico es un foco de atracción y un riesgo para las aves carroñeras (*Gyps fulvus*) y las oportunistas (*Milvus milvus* y *Corvus corax*) que se acercan. Estos hechos son informados al Agente de Protección de la Naturaleza que coordina en esta comarca. Desde la comunicación, se puso en marcha en averiguar al ganadero e informarle.

3.4.3.2. Aguilucho lagunero (Circus aeruginosus)

Figura 17. Intensidad del uso del espacio de Aguilucho lagunero (*Circus aeruginosus*), 2º cuatrimestre 2021. Figura 18. Intensidad del uso del espacio de Aguilucho lagunero (*Circus aeruginosus*) 2º cuatrimestre 2022.



Figura 19. Intensidad del uso del espacio de Aguilucho lagunero (*Circus aeruginosus*) y otros aguiluchos, 2º cuatrimestre 2023.

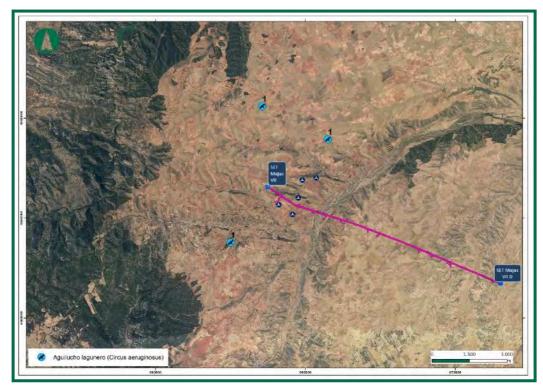


Figura 20. Intensidad del uso del espacio de Aguilucho lagunero (Circus aeruginosus), 2º cuatrimestre 2024.

El aguilucho lagunero, es una especie que es capaz de hacer uso de cualquier hábitat donde pueda encontrar presas en vuelo. Sus vuelos casi rasantes y la necesidad de recorrer grandes distancias. Durante este cuatrimestre se ha detectado en actitud prospectiva al norte de las infraestructuras.

Fotografía 6. Aguilucho lagunero (Circus aeruginosus) en las proximidades del parque.

3.4.3.3. Cernícalo vulgar (Falco tinnunculus) y Cernícalo primilla (Falco naumanni)



Figura 21. Intensidad del uso del espacio de Cernícalo vulgar (*Falco tinnunculus*), 2º cuatrimestre 2021. Figura 22. Intensidad del uso del espacio de Cernícalo vulgar (*Falco tinnunculus*), 2º cuatrimestre 2022.

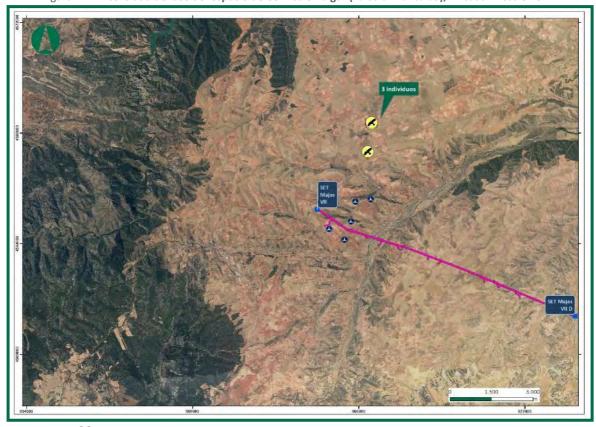


Figura 23. Intensidad del uso del espacio de Cernícalo vulgar (Falco tinnunculus), 2º cuatrimestre 2023.

Las observaciones de esta especie durante el periodo correspondiente a este cuatrimestre se localizan al noreste cerca de una paridera, en el camino del Carrascal por la que cruza una línea de alta tensión. También se han observado en la proximidad de la SET LM7.

Durante este año se ha procedido a la activación de la Vigilancia Activa en dos posiciones de otros parques pertenecientes a este mismo clúster. Esto ha permitido observar el paso migratorio del cernícalo primilla (*Falco naumanni*). Esta especie inicia la migración a principios de agosto y la prolonga hasta principios de octubre debido a que ejemplares juveniles o subadultos prolongan la migración en movimientos dispersivos premigratorios.

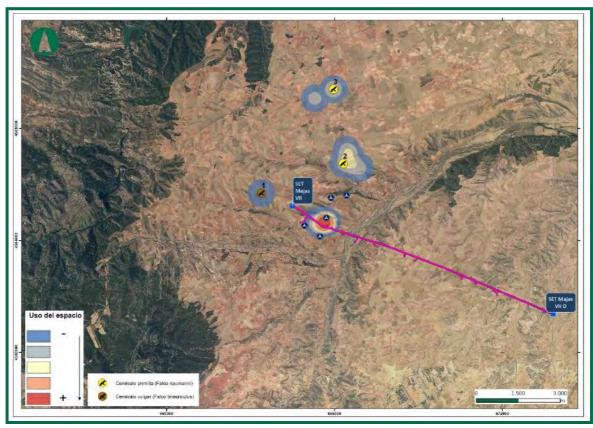


Figura 24. Intensidad del uso del espacio de Cernícalo vulgar (*Falco tinnunculus*) y Cernícalo primilla (*Falco naumanni*) 2º cuatrimestre 2024.

Las observaciones se han dado con dirección NW en pequeños bandos localizados principalmente próximos a tendidos eléctricos que utilizan para posarse para descansar y prospectar. No permanecieron mucho tiempo, con tipo de vuelo en "Desplazamiento". La observación más al sur se trató de un bando de 6 ejemplares que permaneció cazando varias horas hasta seguir el desplazamiento hacia el noroe

3.4.3.4. Milano negro (Milvus migrans)

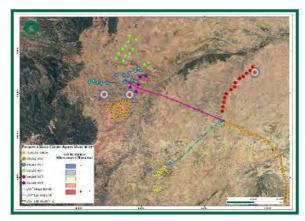


Figura 25. Intensidad del uso del espacio de Milano negro (Milvus migrans), 2º cuatrimestre 2021.

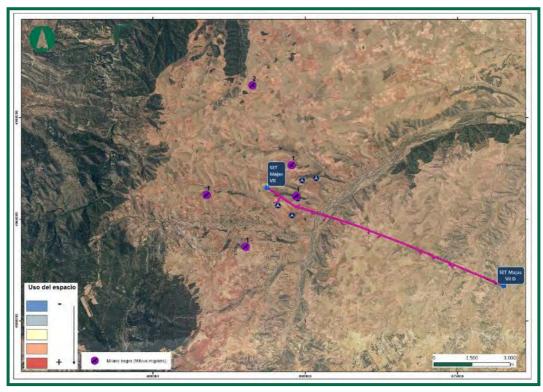


Figura 26. Intensidad del uso del espacio de Milano negro (Milvus migrans), 2º cuatrimestre 2024.

Los avistamientos de esta especie son muy escasos a lo largo del año. Durante la época de migración prenupcial se dan en más ocasiones. Desde el mes de mayo se han avistado ejemplares en actitud de prospección hasta el finales de agosto. Uno de los ejemplares se aproximó a la posición LM7A-05 sin producirse colisión.

3.4.3.5. Culebrera europea (Circaetus gallicus)

Especie estival presente en la zona de estudio, pero con avistamientos reducidos. Hace un uso amplio de la zona, realizando prospecciones de grandes distancias por toda la zona de estudio. Es muy habitual localizar posada en las torres de las líneas de alta tensión.

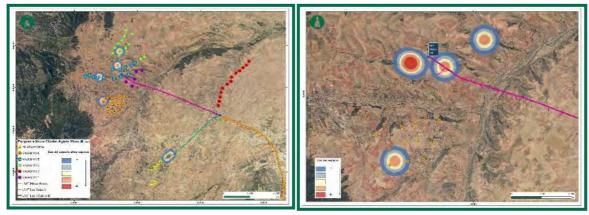


Figura 27. Intensidad del uso del espacio de Culebrera europea (*Circaetus gallicus*), 2º cuatrimestre 2021. Figura 28. Intensidad del uso del espacio de Culebrera europea (*Circaetus gallicus*), 2º cuatrimestre 2022.

Figura 29. Intensidad del uso del espacio de Culebrera europea (*Circaetus gallicus*) y otras rapaces, 2º cuatrimestre 2023.

Todos los avistamientos durante este cuatrimestre se han realizado a finales de agosto, coincidiendo con el paso migratorio. La dirección habitual era oeste o suroeste.

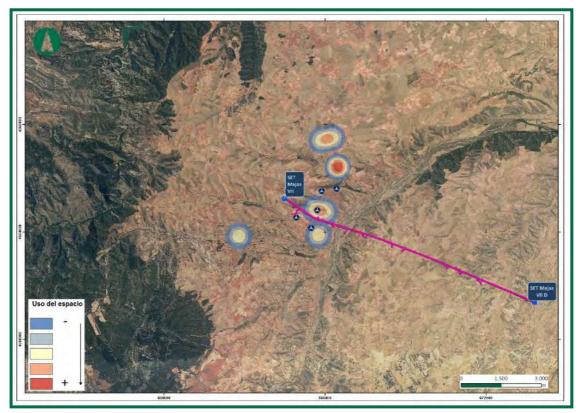


Figura 30. Intensidad del uso del espacio de Culebrera europea (Circaetus gallicus), 2º cuatrimestre 2024.

Fotografía 7. Culebrera europea (Circaetus gallicus) en las proximidades del parque.

3.4.3.6. Corneja negra (*Corvus corone*)

Córvido de mayor tamaño, presente durante todo el año en la zona de estudio. Hace uso amplio del territorio, pero sus avistamientos son muy escasos.

Figura 31. Intensidad del uso del espacio de Corneja negra (Corvus corone) y otras rapaces, 2º cuatrimestre 2023.

Figura 32. Intensidad del uso del espacio de Corneja negra (*Corvus corone*), 2º cuatrimestre 2024.

3.4.4. ZONAS DE NIDIFICACIÓN

Durante el periodo de invierno, se han visitado zonas de cría de grandes aves, identificación los posaderos de los buitres leonados y otras especies gregarias. En la siguiente figura, se muestra las zonas visitadas, consideradas de importancia para la reproducción de aves rupícolas y de grandes rapaces.

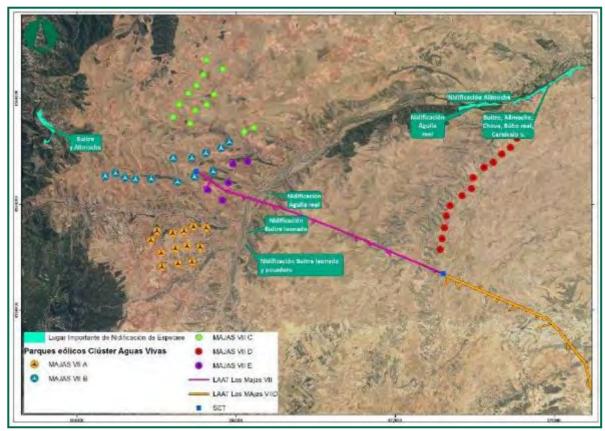


Figura 33. Situación de zonas de fauna establecidas como lugar Importante de nidificación de especies.

Desde el inicio del seguimiento ambiental se realizó una búsqueda de lugares de nidificación de especies relevantes, sobre las cuales fueron objeto de seguimiento. Especialmente del alimoche (*Neoprhon percnopterus*) y águila real (*Aquila chrysaetos*), de las cuales, se han localizado nuevas posiciones de nidificación en este año.

Se aprecia un aumento de nidos de buitre en los últimos años, que cada vez ocupan más huecos, dificultando al alimoche encontrar oquedades para su nido. Se ha contrastado que lugares antiguos de nidificación de alimoche, ahora están ocupados por el buitre leonado.

En estos cortados, se han detectado la presencia de otras muchas aves nidificadoras, como es el caso de: Chova piquirroja (*Pyrrhocorax pyrrhocorax*), halcón peregrino (*Falco peregrinus*), cernícalo vulgar (*Falco tinnunculus*), búho real (Bubo bubo), Gorrión chillón (*Petronia petronia*), avión roquero (*Ptyonoprogne rupestris*), entre otra.

Fotografía 8. Cortados en el río Cámaras, Azuara.

En los cortados de Azuara, se encuentra multitud de cavidades y antiguas casas cueva donde se han hallado una pequeña población de murciélagos de herradura, entre ellas de *Rhinolophus ferrumequinum*, y ejemplares del género *Myotis sp.*, ambas catalogadas como especies "Vulnerable" en el Catálogo de Especies Amenazadas de Aragón. Ambos ejemplares, se han vuelto a ver en los mismos lugares, durante los meses de invierno. Durante este año, se ha detectado la presencia de dos ejemplares de murciélago grande de herradura (*Rhinolophus ferrumequinum*).

Fotografía 9. Murciélago del género Myotis, Azuara.

Fotografía 10. Murciélago de herradura grande (*Rhinolophus ferrumequinum*), Azuara.

3.5. METODOLOGÍA DEL SEGUIMIENTO DE LA QUIROPTEROFAUNA

El muestreo de quirópteros requiere de una metodología de muestreo compleja en comparación con otros grupos taxonómicos debido a su baja detectabilidad. Al tener hábitos nocturnos, la posibilidad de detectarlos visualmente se limita a la inspección de refugios que utilizan durante el día, cuya disponibilidad, especialmente en los casos de especies fisurícolas adaptados al medio urbano, puede ser elevada y fácil de muestrear. No obstante, no todos los refugios utilizados por quirópteros se inspeccionan fácilmente:

- Las cuevas y fisuras en riscos y acantilados rocosos son, a menudo, difícilmente accesibles.
 Muchas especies que utilizan este tipo de refugios son, precisamente, son de gran interés de conservación: por ejemplo, el Murciélago de cueva (*Miniopterus schreibersi*).
- 2. Las especies que utilizan refugios forestales no acostumbran a concentrarse en refugios grandes sino más bien en refugios individuales o de grupos de pequeño tamaño (pies de árboles muertos, corteza y orificios de árboles maduros), por lo que la detección de especies en estos hábitats es poco eficiente: por ejemplo, el Murciélago de bosque (Barbastella barbastella).

La detección acústica es otra metodología ampliamente utilizada, que consiste en la grabación nocturna de las vocalizaciones de ultrasonidos emitidas por los murciélagos para alimentarse, relacionarse socialmente y desplazarse por el territorio, con el fin de identificar las especies cuyas vocalizaciones han sido grabadas. La identificación es mediante un posterior análisis exhaustivo de las grabaciones con software específico. Este método, sin embargo, no permite la detección de todas las especies presentes en la zona de estudio por dos motivos:

No todas las especies son igual de detectables. Aquellas especializadas en hábitats abiertos y grandes vocalizan más intensamente (debido a la necesidad de detectar objetos y presas a mayor distancia) y, por tanto, su detectabilidad es mayor, mientras que aquellas especializadas en hábitats cerrados, con objetos y presas a menudo cerca del murciélago, vocalizan más débilmente y, por tanto, su detectabilidad es menor. Este último grupo de especies engloba:

- Plecotus sp.
- Rhinolophus sp.
- Myotis sp.

Muchas especies vocalizan igual, siendo imposible discernir entre ellas (algunas raras y otras comunes). Estos casos se engloban en estos 'grupos acústicos':

- Rhinolophus hipposideros/R.mehelyi/R.euryale:
- Eptesicus sp. /Vespertilio sp. /Nyctalus sp.
- Plecotus sp. (todas las especies de este género)
- Pipistrellus kuhlii/P.nathusii
- Pipistrellus pipistrellus/P.pygmaeus
- Pipistrellus pygmaeus/Miniopterus schreibersi
- Myotis sp. (todas las especies de este género)

Debido a esto, la combinación de metodologías es la manera más efectiva de inventariar las especies de quirópteros presentes en un área determinada (Flaquer et al., 2007). Aun así, es preciso recalcar que la no detección de una especie mediante estas metodologías, no significa la ausencia de esta en el área de muestreo, por las limitaciones de cada técnica mencionadas anteriormente.

El objetivo de la metodología utilizada para el muestreo de quirópteros es caracterizar la quiropterofauna mediante:

- **a.** Inventariado de las especies detectadas acústicamente.
- **b.** Ubicación de los refugios o puntos de agua con potencial de uso por quirópteros en las inmediaciones de los parques.
- c. Determinar la densidad por horas de actividad.
- **d.** Índice da Actividad de cada especie (minutos positivos de actividad por noche).
- e. Hábitats favorables para los murciélagos

A continuación, se describen las metodologías utilizadas.

3.5.1. MUESTREO MEDIANTE ESTACIONES DE GRABACIÓN CONTINUA

Esta metodología ha consistido en la colocación de grabadoras pasivas de ultrasonidos en puntos determinados de las inmediaciones de los parques eólicos para la detección acústica de quirópteros y el posterior análisis de los sonidos. Mediante una grabadora de sonido programada, se registra todo el sonido detectable por el micrófono. El sonido registrado se guarda en archivos de formato .WAV en una tarjeta de memoria extraíble.

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Utilizando como referencia las directrices y recomendaciones de SECEMU (González et al., 2013), EUROBATS (Rodrigues et al., 2015) y la propuesta del MITECO (Biodiversidad, S. G. & Marina.). Las grabaciones se han realizado regularmente para cada una de las estaciones, obteniendo un mínimo de 10 noches/mes de grabaciones. Con el objetivo de asegurar un mínimo de 3 días consecutivos de meteorología óptima (viento <15 km/h, temperatura >10°C y ausencia de lluvia), desde el inicio del período de mayor actividad de quirópteros (mayo). Dado que en algunos casos puede resultar complicado mantener estas grabadoras a nivel del suelo en un mismo emplazamiento durante periodos prolongados, podrán variar de emplazamiento en diferentes fechas, aunque situándose siempre en lugares muy próximos (inferior a 100 m) respecto a su ubicación original.

Es preciso mencionar aquí que, aunque el tiempo total de grabación pueda parecer muy corto, este es suficiente para detectar vocalizaciones de quirópteros, ya que estos son emitidos a un ritmo muy elevado (una vocalización por cada 40-200 milisegundos).

Las grabadoras se han ubicado en una altura comprendida entre 0,5 y 2 metros, dependiendo de la facilidad de acceso al lugar de colocación.

De acuerdo con las indicaciones de MITECO, se usarán como puntos de grabación las zonas de caza (campo abierto, zonas de cultivo, hábitats naturales o naturalizados). Se deberá ubicar al menos una estación, en una posición de aerogenerador, para poder estudiar el grado de atracción que tienen sobre los insectos, y por lo tanto de los quirópteros. A pesar de las indicaciones del MITECO, se ha evitado ubicar como puntos de grabación, zonas de refugios o de tránsito entre zonas de refugio, para no sesgar la muestra.

Este estudio se llevará a cabo dentro del área definida por un radio de, al menos, 1 km en torno a la envolvente de los aerogeneradores.

Las zonas de grabación se han seleccionado previamente teniendo en cuenta la representación de los distintos hábitats para quirópteros, dentro de la zona de estudio. Tenido en cuenta un radio de 500 m para los murciélagos de detección de largo alcance y de 25 m para los de corto alcance.

Para cada punto de grabación se toman los siguientes datos:

- Proyecto
- Nombre (nº) de la estación
- Fecha/hora

- Coordenadas XY/UTM
- Altitud: msnm
- Altura sobre el suelo (m)
- Programa de grabación empleado
- Detector (modelo y número ID)

Una de las grabadoras utilizadas corresponde a Audiomoth, una grabadora de audio de espectro completo (*full spectrum*) basado en el procesador Gecko de Silicon Laboratories Inc. La tecnología que utiliza le permite grabar cualquier frecuencia dentro de todo el rango audible (0-20kHz) y dentro del rango de ultrasonidos que emiten los murciélagos (20-192kHz). Es capaz de registrar sonido descomprimido en una tarjeta microSD a una frecuencia de muestreo de entre 8kHz y 384kHz. En los últimos años, esta se ha convertido en una creciente alternativa a las grabadoras para análisis bioacústico convencionales (por ejemplo, SM4 BAT de Wildlife Acoustics Inc) debido a su reducido tamaño, facilidad de configuración, posibilidad de extender la batería y su bajo coste, permitiendo la adquisición de varias grabadoras para un muestreo más efectivo.

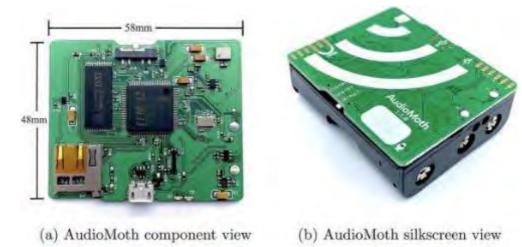


Figura 24. Audiomoth: vista del interior (a) y del exterior (b). Fuente: Hill et al. (2019).

Cada noche, con el fin de aumentar la autonomía de las grabadoras AudioMoth, y asegurar la grabación de varias noches y facilitar el análisis de los datos posterior, se ha grabado durante 2 segundos cada 10 segundos.

Figura 25 Esquema de la programación de grabación acústica de quirópteros utilizada: cada noche, la grabadora se activa durante un total de 6 horas. Durante estas 6h, la grabadora registra sonidos durante 2 segundos cada 12 segundos (2 segundos de grabación más 10 segundos de espera).

Otra de las grabadoras utilizadas es el MiniBat (WildLife Acoustics) que recogen frecuencias de sonidos entre 6 y 250 kHz, con filtro de ruidos, generando archivos WAV. Es programable desde otros dispositivos vía bluetooth mediante una App.

En caso, se han programado para que se activen 30 min antes y después del orto en modo ultrasónico.

Figura 26. Mini Bat: vista del interior (a) y del exterior (b). Fuente: WildLife Acoustics.

El análisis de identificación de estas grabaciones se realizará mediante el software Kaleidoscope, un programa de procesamiento y análisis de sonido creado por Wildlife Acoustics Inc ampliamente utilizado en análisis bioacústico. La identificación de la especie se realiza de manera automática utilizando los algoritmos propios del programa y se revisa manualmente para evitar identificaciones erróneas, posibles especialmente en los grupos de especies que vocalizan igual y mencionados en el apartado anterior.

Cada grabadora se ha ido colocando en una estación diferente, cada semana. Se han seleccionado un total de **7 estaciones de grabación semicontinua** en las inmediaciones del parque y las líneas de evacuación.

Complementariamente, también se ha dedicado un esfuerzo al muestreo en hábitats diferentes (puntos de agua y refugios) para ampliar el rango de especies detectadas.

De acuerdo a la información disponible en las Bases de datos de biodiversidad y Libro rojo de mamíferos, las especies presentes en las cuadrículas que abarca el proyecto son las siguientes:

NOMBRE CIENTÍFICO	NOMBRE COMÚN				
Rhinolophus ferrumequinum	Murciélago grande de herradura				
Rhinolophus hipposideros	Murciélago pequeño de herradura				
Rhinolophus euryale	Murciélago mediterráneo de herradura				
Hypsugo savii	Murciélago montañero				
Eptesicus isabellinus	Murciélago hortelano				
Plecotus austriacus	Orejudo gris				
Tadarida teniotis	Rabudo				

Tabla 19. Especies de quirópteros conocidos en la zona.

3.5.2. INSPECCIÓN DE REFUGIOS POTENCIALES Y PUNTOS DE AGUA

Esta metodología consiste en la identificación y caracterización simple de los refugios potenciales de quirópteros, así como de los puntos de agua, zonas conocidas de concentración de estas especies tanto para alimentarse como hidratarse. Por cada refugio potencial visitado, se ha valorado si es apto para albergar quirópteros en base a la presencia de tres características fundamentales:

- 1. Presencia de habitáculos oscuros y con poca o nula frecuentación humana.
- 2. Presencia de orificios de cierta magnitud (15-20 cm) que sirvan de entrada y salida.
- 3. Presencia de excrementos de estos mamíferos.

Se han localizado casetas abandonadas propicias para esta finalidad. Al tratarse de una zona principalmente agrícola, con poco bosque y escaso desnivel, este tipo de estructuras son las más adecuadas para el establecimiento de colonias, especialmente de los pertenecientes a la familia Rhinolophidae y al género Pipistrelus.

PUNTOS DE	UTM ETRS	589 30N
GRABACIÓN	X	Υ
22	675960	4565874
24	664414	4563169
25	663774	4561780
26	667124	4565645
27	665112	4565239
28	661791	4564114
29	664561	4568446
30	673688	4561541
31	676333	4567856
32	658879	4566843

Tabla 20. Ubicación del punto de grabación y coordenadas UTM.

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

3.5.3. TIPOS DE REFUGIOS

Los murciélagos dependen estrechamente de sus refugios ya que pasan la mayor parte de su vida en ellos. Los escogen por las demandas fisiológicas de los adultos o de los jóvenes en cada momento del ciclo anual, por la presión de los depredadores, por consideraciones relativas a comportamientos sociales o por diversos condicionantes geográficos, micro climáticos o topográficos. En algunos casos los requerimientos son tan específicos, que la ausencia o la destrucción de refugios apropiados, es la principal causa de la ausencia o rarefacción de algunas especies en determinadas áreas. Por ello se consideró como uno de los objetivos de este informe la localización y caracterización de estos lugares:

- Cueva: comprende cuevas, simas y cualquier otra cavidad de origen natural. No se ha encontrado información sobre ninguna cueva en las proximidades del proyecto donde pueda existir alguna población de murciélagos.
- Mina: cavidades del terreno producidas por el hombre para la extracción de minerales, rocas o áridos. Incluye canteras y graveras. Los sistemas de galerías subterráneas de los complejos mineros de mayor entidad, sustituyen el tipo de ecosistema subterráneo que suponen las cuevas en las provincias que carecen de ellas. En algunos casos suponen el único lugar disponible para las especies trogloditas en un amplio terreno y si éstas se sitúan además en terrenos en los que la disponibilidad de recursos tróficos e hídricos es suficiente, entonces no es extraño que sea en estos complejos mineros donde se encuentren algunas de las colonias de murciélagos más interesantes, no sólo de las provincias con menor número de cavidades naturales, sino también de todo el conjunto de la comunidad.
- Túnel: paso subterráneo artificial que se abre para establecer una comunicación o para realizar determinadas actividades. Incluye galerías de reconocimiento de presas y similares. Especialmente importantes para los murciélagos han resultado los túneles de las vías férreas abandonadas, tanto de líneas en desuso o desmanteladas como los de los antiguos trenes mineros. A la estructura propicia que genera el tipo de material de construcción, que suele dejar fisuras y grietas muy apropiadas, se une el hecho de la escasa interferencia humana de la que gozan por encontrarse alejados de áreas transitadas por el hombre.
- Grieta: únicamente para grietas naturales en cortados rocosos, peñascos, acantilados que, debido a su estrechez no son accesibles para el ser humano.

- Edificación abandonada: cualquier tipo de edificación humana (no histórica) destinada a viviendas, actividades agrícolas o ganaderas y de servicios (casas, transformadores, silos, naves, molinos, estaciones de ferrocarril, etc.) que se encuentre en desuso y generalmente abandonada o en ruinas y que resulte improbable que se vuelva a utilizar.
- Edificación en uso: Cualquier tipo de edificación humana (no histórica) destinada a viviendas, actividades agrícolas o ganaderas y de servicios (casas, transformadores, silos, naves, etc.) que esté en uso o cerrada, pero no en ruinas ni abandonada.
- Edificios históricos: En general, grandes edificios de carácter histórico o religioso. Incluso aquellos
 que actualmente se encuentren en ruinas o abandonados (iglesias, monasterios, castillos,
 palacios, ermitas, conventos, etc.).
- Árbol: cualquier tipo de grieta, oquedad o estructura que se encuentre en un árbol, sea cual fuere su especie.
- Puente: construcción que se utiliza para pasar de un lado a otro de un río, un desnivel, etc. (en carreteras, caminos, vías férreas, etc.) En ocasiones el gran tamaño de algunos puentes genera en su parte inferior (ojos o arcos) una cavidad con aspecto de túnel, pero se ha seguido con el criterio de asignarlos como puentes. Las numerosas grietas y profundas fisuras que se generan en las juntas de las piedras que los forman, son lugares muy apreciados por los murciélagos fisurícolas.
- Caja: cajas nido o refugios artificiales para aves insectívoras o específicas para murciélagos.
- Otros: resto de refugios no incluidos en los anteriores tales como pozos, presas, etc.

3.5.4. FUNDAMENTOS ECOLOCACIÓN

La ecolocación es el método que tienen lo quirópteros para ubicarse en el espacio. Consiste en la emisión de sonidos en un rango de frecuencia ultrasónica (>14 kHz), cuya interacción con los elementos del medio (ecos) les permite obtener información acerca de los distintos elementos presentes en un espacio determinado.

Es un método de ubicación similar al radar, con la diferencia de que en el caso de la ecolocación se utilizan ondas acústicas en lugar de ondas electromagnéticas. Durante este proceso el individuo que actúa a la vez como transmisor y receptor de la señal acústica, produce una serie de pulsos acústicos de corta duración, que pueden ser radiados desde el transmisor y registrados por el receptor. Los

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

pulsos de sonidos deben ser cortos, ya que el receptor mientras está emitiendo no puede recibir los ecos. El tiempo que tarda en llegar un eco indica la distancia a la cual se encuentra el objeto que ha reflejado el sonido. Cuanto más preciso pueda ser medido este lapso de tiempo, mejor conocimiento de la distancia se tendrá. Mientras que la distancia a la que se encuentra la superficie que ha reflejado el eco es fácilmente medible, conocer a dirección en la que lo hace es más complicado. Existen diferentes formas de determinar la dirección:

- Utilizando un foco concentrado de emisión con el que escanear el medio, de manera que los ecos sólo puedan retornar desde la misma dirección en la que el rayo sónico ha sido emitido.
- Teniendo varios receptores que puedan calcular la dirección en función de las diferencias de tiempo entre ellos.

Si se usan señales de banda ancha (que cubren un elevado rango de frecuencia) también se puede utilizar la calidad del tono del eco para determinar su dirección. Los distintos grupos de murciélagos que existen utilizan diferentes combinaciones de estas posibilidades.

Conocer el fundamento por el cual un eco retorna, es más difícil y menos preciso de determinar que medir la distancia a la que está el objeto que ha causado esa reflexión del sonido.

Además de las señales producidas para orientarse e identificar presas y otros objetos, los murciélagos emiten señales sociales que utilizan para comunicarse entre ellos. Suelen emitirlas en frecuencias relativamente bajas, a menudo también parcialmente audibles para el ser humano, y suelen tener complejas estructuras en comparación con las de ecolocación que son más sencillas y repetitivas.

La mayoría de las especies emiten sus señales de ecolocación con una intensidad suficiente para recibirse a distancias de hasta 50 m en buenas condiciones con un equipo de sensibilidad media. Existen excepciones entre las que se podrían mencionar a los murciélagos de herradura (*Rhinolophidae*) y a los orejudos (gen. *Plecotus*) porque emiten con intensidad relativamente baja, solo captable a muy pocos metros con un equipo normal. Por razones acústicas las frecuencias más elevadas se disipan a distancias más cortas que las más graves. En el caso de *Plecotus* las señales no tienen una frecuencia tan elevada, pero sus enormes pabellones auriculares les permiten detectar sus propias débiles señales reduciendo el radio de riesgo de ser detectados por depredadores y por presas.

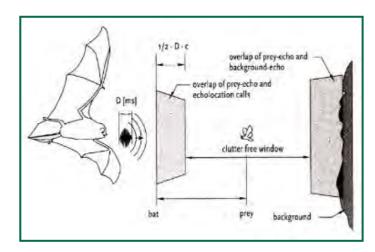


Figura 27. Delante de cada murciélago que esté utilizando la ecolocalización se extiende una "ventana ciega", puesto que el eco que retorna lo hace mientras el murciélago aún está emitiendo los pulsos de llamada. Una zona similar, en la que el murciélago puede apenas detectar ecos débiles, se asocia con cualquier superficie reflectante. Tan sólo entre ellos existe una "ventana sin interferencias" (clutter-free window), en la cual el murciélago puede detectar los ecos débiles de pequeños insectos.

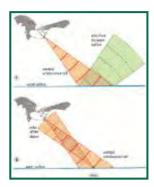


Figura 28. Cazar sobre una superficie suave (como la superficie del agua) conlleva la ventaja de que el impacto del sonido sobre la superficie se refleja en una dirección alejada del murciélago (a) y sólo recibe el eco de vuelta si un objeto, p.ej. una presa, es interceptada (b).

3.6. RESULTADOS DEL ESTUDIO DE QUIRÓPTEROS

Los quirópteros, al igual que las aves, han sido tenidos en cuenta para este estudio debido a que también pueden ser objeto de afecciones y mortalidad por colisión y barotrauma por efecto de los aerogeneradores, incrementando su vulnerabilidad. Como sucede en otras especies con elevado riesgo de extinción, la baja tasa de renovación de las poblaciones de murciélagos hace que pequeños incrementos en la mortalidad de ejemplares adultos puedan tener consecuencias significativas para su viabilidad (Racey & Entwistle, 2003; Hötker et al., 2006)

Las llamadas o pulsos de murciélagos intensas (amplitud alta) pueden ser detectadas a grandes distancias en contraste con las llamadas poco intensas (<1 m). Teniendo en cuenta la alta sensibilidad del micrófono utilizado y las buenas condiciones atmosféricas acontecidas durante las sesiones de seguimiento, pudieron detectarse señales de ecolocación a distancias de más de 50 metros. Cabe destacar que determinadas especies, como los murciélagos orejudos (*Plecotus sp.*), emiten ultrasonidos de ecolocación muy débiles, incluso son capaces de detectar a sus presas mediante escucha pasiva, es decir, percibiendo los sonidos que producen al aletear o al desplazarse, es por ello que dichas especies resultan difíciles de identificar mediante detectores de ultrasonidos y por ello pueden estar ausentes en muchos estudios.

3.6.1. ESPECIES DETECTADAS

A continuación, se detallan las especies detectadas y la cantidad de contactos (o *bat passes*) registrados de cada una de ellas. Se consideran los contactos en lugar de los pulsos debido a la variabilidad en el número de pulsos emitidos por cada una de las diferentes especies en un mismo espacio de tiempo, que puede inducir a error a la hora de comparar la actividad de cada una de ellas.

A modo de introducción y para el conocimiento de las características y especificaciones de las especies presentes, se detallan algunos rasgos sobre los tipos de hábitats preferentes, tipos de refugios y sobre los tipos de señales que emiten, de las principales especies de murciélagos:

- Las especies del género *Pipistrellus sp.* y la especie *Hypsugo savii* son las más abundantes, que se encuentran en todo tipo de hábitats y en rangos altitudinales muy amplios. Muestran una fuerte selección hacia las zonas húmedas y medios urbanos donde encuentra lugar como refugio.

- La segunda especie más abundante son las del género *Rhinolophus sp.*, capaz de desenvolverse en cualquier medio que ofrezca un mínimo de recursos alimentarios y de refugios apropiados. Muestra cierta preferencia por ambientes urbanos ubicados en zonas de arbolado o ambientes húmedos. Sus refugios preferentes son las cuevas. En el área de estudio se ha detectado una colonia cerca de una de las posiciones. Sus señales de débil intensidad, difícilmente perceptibles a una distancia superior a los 10m. Dos de las tres especies presentes se encuentran catalogadas como Vulnerables (VU) en el Catálogo Español de Especies Amenazadas, y las tres están catalogadas en Aragón como Vulnerables.
- En cuanto a la especie *Barbastella barbastella* presenta una abundancia muy escasa. Tiene una fuerte atracción por las zonas arboladas y bosque de ribera y un rechazo hacia las zonas de pastizal y matorral (el hábitat más característico de la zona). Sus señales de ecolocación son de fácil identificación.
- Son siete las especies europeas del género *Myotis sp.* por lo general muestran una preferencia por las formaciones arbóreas y bosques de ribera, evitando las áreas de matorral, especificaciones dadas únicamente en la ribera del Ebro. Su distribución es muy baja fuera de sus áreas preferentes. Los refugios cavernícolas donde puede crear colonias. Algunas de estas especies están catalogadas como Vulnerables (VU) en el Catálogo Español de Especies Amenazadas.
- La presencia de especies del género *Nyctalus sp.* Ilama mucho la atención, dado que se trata de una especie muy asociada a ambientes de boques de roble y haya con poca preferencia a otro tipo de hábitats. Sin embargo, es una de las pocas especies con un carácter migrador acusado, con desplazamientos estacionales de varios kilómetros. Sus señales de baja frecuencia les permite cazar muy bien en espacios más cerrados, emite una sonoridad muy rica que les permite en variados ambientes. Emite pulsos muy fuertes audibles desde más de los 100m de distancia.
- El *Tadarida teniotis* no tienen unos requerimientos ecológicos estrictos, por lo general prefiere los espacios abiertos, siempre que exista refugios adecuados. Es una especie fisurícolas en grietas naturales pero que se ha adaptado a construcciones humanas. Tiene preferencia de caza en zonas abiertas arbustivas. Emite pulsos muy fuertes audibles desde más de los 100m de distancia.

La identificación de algunas especies tiene limitaciones por tener llamadas similares con otros taxones similares, por este motivo se agrupan en grupos fónicos. Para la auto identificación sonora mediante software automático, se ha aplicado un rango conservador.

A continuación, se detallan las especies detectadas y la cantidad de pulsos de cada una de ellas a lo largo del cuatrimestre.

Se han detectado llamadas de 11 grupos como se detalla en la tabla siguiente:

Grupos/especies	nº PULSOS	nº CONTACTOS	%
Barbastella barbastellus	11	2	0,0%
Hypsugo savii	2.596	194	2,5%
Myotis sp.	16	3	0,0%
Nyctalus sp. /Eptesicus sp.	1.478	309	4,0%
Pipistrellus khulii/Pipistrellus nathusii	17.180	1.005	12,9%
Pipistrellus pipistrellus	30.938	1.250	16,0%
Pipistrellus pygmaeus/Miniopterus schreibersii	4.041	226	2,9%
Plecotus sp.	164	23	0,3%
Rhinolophus ferrumequinum	226	18	0,2%
Rhinolophus hipposideros	3	1	0,0%
Tadarida teniotis	1.588	256	3,3%
No identificados	32.115	4.517	57,9%
Total	90.356	7.804	100%

Tabla 19. Registros de las diferentes especies identificadas agrupando las estaciones de escucha.

Durante este cuatrimestre la especie más representada en el área de estudio es *Pipistrellus pipistrellus*, con 1.250 contactos, lo que representa el 16% del total. El segundo grupo más representado es el formado por *Pipistrellus khulii/Pipistrellus nathusii*, con 1.005 contactos, un casi un 13%. El grupo formado por *Nyctalus sp. /Eptesicus sp.*, representan el 4% del total con 309 contactos, son frecuentes en hábitats forestales o semiforestales. La especie *Tadarida teniotis* obtuvo 256 contactos, *Pipistrellus pygmaeus/Miniopterus schreibersii* registraron 226 contactos y la especie *Hypsugo savii* obtuvo 194 contactos. El resto de las especies han tenido un bajo número de contactos, Plecotus sp. obtuvo 23 contactos, *Rhinolophus ferrumequinum* con 18 contactos, *Myotis sp.* con 3 contactos, *Barbastella barbastellus* con 2 contactos y *Rhinolophus hipposideros* con 1 contacto. Muchas de estas especies se han detectado también en el trabajo de revisión de siniestralidad. Resaltar que 4.517 contactos corresponden con pulsos no identificados. La media de contactos por noche ha sido mayor en las estaciones 25 y 26 con vegetación correspondiente a pastos agrícolas, con

una diferencia notable al resto. El periodo de mayor actividad, en el ciclo biológico de este grupo, es el de Lactancia que cubre los meses de junio y julio. La franja de mayor actividad se ha dado entre las 22h y las 00h.

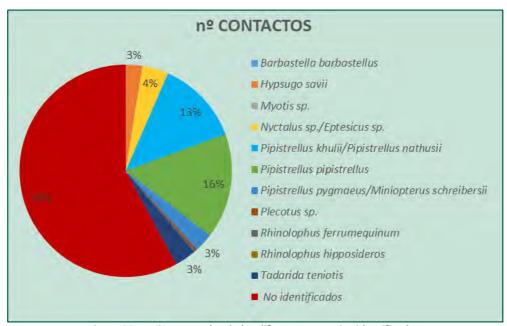


Figura 39. Registros totales de las diferentes especies identificadas.

Las estaciones de quirópteros están repartidas en el entorno del parque eólico, para la ubicación de las mismas se ha tenido en cuenta la metodología propuesta por el MITECO. A continuación, se muestra la localización de las estaciones en la zona de estudio, con respecto a la ubicación del parque eólico del presente informe.

Figura 40. Estaciones de grabación de quiropterofauna.

Por otra parte, se han analizado las especies por cada una de las estaciones, para conocer qué especies son más abundantes en cada zona. En la siguiente tabla se muestran las especies detectadas por estaciones, concretamente de la estación nº 22, la estación nº 24, la estación nº 25, la estación nº 26, la estación nº 27, la estación nº 28, la estación nº 29, la estación nº 30 y de la estación nº 31.

Grupos/Especies	ESTACIÓN 22	ESTACIÓN 24	ESTACIÓN 25	ESTACIÓN 26	ESTACIÓN 27	ESTACIÓN 28	ESTACIÓN 29	ESTACIÓN 30	ESTACIÓN 31	Total
Barbastella barbastellus	1	-	-	-	1	-	-	-	-	2
Hypsugo savii	22	33	33	47	14	31	14	-	-	194
Myotis sp.			-	2	1	-	-	-	-	3
Nyctalus sp./Eptesicus sp.	9	29	92	45	13	22	32	65	2	309
Pipistrellus khulii/Pipistrellus nathusii	20	102	142	207	33	396	99	6	-	1.005
Pipistrellus pipistrellus	69	90	15	706	31	246	30	63	-	1.250
Pipistrellus pygmaeus/Miniopterus schreibersii	20	16	-	14	7	166	1	2	-	226
Plecotus sp.	-	1	-	3	-	18	1	-	-	23

Grupos/Especies	ESTACIÓN 22	ESTACIÓN 24	ESTACIÓN 25	ESTACIÓN 26	ESTACIÓN 27	ESTACIÓN 28	ESTACIÓN 29	ESTACIÓN 30	ESTACIÓN 31	Total
Rhinolophus ferrumequinum	,	4	,	6	3	2	1	3	-	18
Rhinolophus hipposideros	1	-	-	-	-	-	-	-	-	1
Tadarida teniotis	11	12	3	5	11	27	9	178	-	256
No identificados	115	559	949	1.350	319	409	571	241	4	4.517
Total	268	846	1.234	2.385	433	1.317	757	558	6	7.804

Tabla 20. Registros de las diferentes especies identificadas en cada una de las estaciones de escucha.

Destacar que la estación con mayor número de contactos corresponde con la estación 26, con 2.385 contactos, con 706 contactos del grupo *Pipistrellus pipistellus*. La estación 28 registró 1.317 contactos, siendo el grupo más abundante *Pipistrellus khulii/Pipistellus nathusii* con 396 contactos. La estación 25 obtuvo 1.234 contactos, registrando el grupo de *Pipistrellus khulii/Pipistellus nathusii* el mayor número de contactos de esta estación con 142. La estación con menor número de contactos es el número 31, con un total de 6 contactos, 4 no identificados y 2 del grupo formado por *Nyctalus sp. /Eptesicus sp.* La especie *Barbastella barbastellus* fue detectada en la estación 22 con un contacto y en la estación 27 con un contacto también. La especie *Myotis sp.* fue detectada con 2 contactos en la estación 26 y 1 contacto en la 27. La especie *Plecotus sp.* registró 18 contactos en la estación 28, 3 contactos en la estación 26 y un contacto en las estaciones 24 y 29. La especie *Rhinolophus* hipposideros fue detectada por un contacto en la estación 20. *Tadarida teniotis* fue detectada en todas las estaciones, excepto en la 31, y en la estación 30 obtuvo 178 contactos. El grupo formado por *Nyctalus sp. /Eptesicus sp.* fueron las únicas especies detectadas en todas las estaciones.

Como podemos observar, la especie *Pipistrellus pipistellus* es la más abundante y se concentra en la estación 26 y 28, aunque se registran unos pocos contactos en todas las estaciones, excepto en la 31.

3.6.2. HORARIOS DE ACTIVIDAD

Una parte importante de este estudio consiste en identificar las horas de mayor actividad, ya que será cuando un mayor riesgo de mortalidad exista. Estos horarios dependen considerablemente de las especies, de la ubicación de sus refugios respecto de los aerogeneradores, de la época del año y de las condiciones meteorológicas existentes.

En lo que respecta a horarios de mayor actividad, la franja en la que se han registrado un mayor número de llamadas en total es la comprendida entre las 22:00 y 23:00 horas seguida de las franjas entre las 23:00 y las 00:00, 03:00 y las 04:00, y 01:00 y 02:00.

INTERVALO HORARIO	nº CONTACTOS
00:00/01:00	723
01:00/02:00	840
02:00/03:00	710
03:00/04:00	911
04:00/05:00	438
05:00/06:00	450
06:00/07:00	410
07:00/08:00	25
20:00/21:00	77
21:00/22:00	483
22:00/23:00	1.668
23:00/00:00	1.069
Total	7.804

Tabla 21. Registros totales en función de la hora.

Figura 41. Registros totales en función de la hora.

Grupos/especies	00:00/01:00	01:00/02:00	02:00/03:00	03:00/04:00	04:00/05:00	02:00/00:50	00:20/00:90	00:80/00:20	20:00/21:00	21:00/22:00	22:00/23:00	23:00/00:00	Total
Barbastella barbastellus	-	2	-	-	-	-	-	-	-	-	-	-	2
Hypsugo savii	26	29	15	12	7	5	2	-	-	10	38	50	194
Myotis sp.	-	1	-	1	-	-	-	-	-	-	1	-	3
Nyctalus sp. /Eptesicus sp.	23	18	21	16	4	14	65	7	16	38	50	37	309
Pipistrellus khulii/Pipistrellus nathusii	129	156	76	76	83	120	9	-	-	33	176	147	1.005
Pipistrellus pipistrellus	112	148	104	98	63	87	11	-	-	102	397	128	1.250
Pipistrellus pygmaeus/Miniopterus schreibersii	23	21	30	23	25	32	8	-	-	8	32	24	226
Plecotus sp.	-	1	1	3	3	6	-	-	-	-	7	2	23
Rhinolophus ferrumequinum	3	4	-	1	-	3	-	-	-	-	4	3	18
Rhinolophus hipposideros	-	-	-	-	-	-	-	-	-	-	1	-	1
Tadarida teniotis	3	5	8	4	7	23	152	4	11	25	10	4	256
No identificados	404	455	455	677	246	160	163	14	50	267	952	674	4.517
Total	723	840	710	911	438	450	410	25	77	483	1.668	1.069	7.804

Figura 42. Contactos totales en función de la hora y los grupos de vocalización.

ESPECIE	MÁXIMA DISTANCIA DE DETECCIÓN DE ULTRASONIDOS
ESPECIE	(metros)
Eptesicus nilssonii	50
Eptesicus serotinus	40
Hypsugo savii	40
Miniopterus schreibersii	30
Myotis dasycneme	30
Nyctalus noctula	100
Pipistrellus kuhlii	30
Pipistrellus nathusii	30
Pipistrellus pipistrellus	30
Pipistrellus pygmaeus	25
Tadarida teniotis	100
Vespertilio murinus	50

Tabla 22. Distancias máximas de detección por especies. Fuente: Guidelines for conservation of bats in wind farm projects (Revision 2014).

Cabe destacar que determinadas especies, como los murciélagos orejudos (*Plecotus sp.*), emiten ultrasonidos de ecolocación muy débiles, incluso son capaces de detectar a sus presas mediante escucha pasiva, es decir, percibiendo los sonidos que producen al aletear o al desplazarse, es por ello que dichas especies resultan difíciles de identificar mediante detectores de ultrasonidos y por ello pueden estar ausentes en muchos estudios. Por otro lado, los géneros Nyctalus y Eptesicus realizan llamadas muy similares y los detectores pueden confundirlas, por lo que discernir entre las especies con métodos automáticos puede no ser concluyente y por ese motivo se agrupan. *Miniopterus schreibersii* también puede confundirse con *Pipistrellus pygmaeus*.

Estación de quirópteros Autopistas y autovias Buffer 500 m Bosque Plantación A.F.M. (Bosquetes) Bosque Plantación A.F.M. (Bosquetes) A.F.M.

3.6.3. DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DEL HÁBITAT

Figura 43. Hábitats en el área de detección en las estaciones de grabación de quiropterofauna.

Para cada estación de medición de escuchas de quirópteros, se analiza el tipo de suelo con el fin de separar distintos ecosistemas y conocer los hábitats y las especies que los frecuenta.

					ESTACION	IES QUIR	OPTEROS				
HABITATS	22	23	24	25	26	27	28	29	30	31	32 Total
A.F.M. (Bosquetes)	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	40,00%	0,00%	0,00%	0,00%	0,00%

					ESTACIO	NES QUIR	OPTEROS	;				
HABITATS	22	23	24	25	26	27	28	29	30	31	32	Total
A.F.M. (Riberas)	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	33,33%	11,11%	11,11%
Agua	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	20,00%	0,00%	0,00%	0,00%	0,00%	2,22%
Bosque	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	22,22%	4,44%
Matorral	0,00%	0,00%	0,00%	0,00%	0,00%	50,00%	0,00%	0,00%	0,00%	0,00%	22,22%	6,67%
Mosaico sobre cultivo	0,00%	66,67%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	4,44%
Pastizal-Matorral	50,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	83,33%	8,33%	11,11%	17,78%
Agrícola y prados artificiales	50,00%	33,33%	100,00%	100,00%	100,00%	50,00%	40,00%	100,00%	16,67%	25,00%	33,33%	40,00%
Bosque Plantación	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	33,33%	0,00%	8,89%

Tabla 23. Tipos de hábitats en un radio de 500 m de las estaciones.

Figura 44. Porcentaje de los hábitats que abarca las estaciones a 500m.

Se puede observar que el hábitat más abundante es el pasto agrícola y prados artificiales (40%) y el menos abundante el "A.F.M (Bosquetes)" (4,4%). En casi todas las estaciones se han recogido pulsos y se han podido detectar distintas especies/grupos.

Grupos/Especies	ESTACIÓN 22	ESTACIÓN 24	ESTACIÓN 25	ESTACIÓN 26	ESTACIÓN 27	ESTACIÓN 28	ESTACIÓN 29	ESTACIÓN 30	ESTACIÓN 31	Total
Barbastella barbastellus	1	-	-	-	1	-	-	-	-	2
Hypsugo savii	22	33	33	47	14	31	14	-	-	194
Myotis sp.			-	2	1	-	-	-	-	3
Nyctalus sp./Eptesicus sp.	9	29	92	45	13	22	32	65	2	309
Pipistrellus khulii/Pipistrellus nathusii	20	102	142	207	33	396	99	6	-	1.005
Pipistrellus pipistrellus	69	90	15	706	31	246	30	63	-	1.250
Pipistrellus pygmaeus/Miniopterus schreibersii	20	16	-	14	7	166	1	2	-	226
Plecotus sp.	-	1	-	3	-	18	1	-	-	23
Rhinolophus ferrumequinum	-	4	-	6	3	2	-	3	-	18
Rhinolophus hipposideros	1	-	-	-	-	-	-	-	-	1
Tadarida teniotis	11	12	3	5	11	27	9	178	-	256
No identificados	115	559	949	1.350	319	409	571	241	4	4.517
Total	268	846	1.234	2.385	433	1.317	757	558	6	7.804

Tabla 24. Especies y números de contactos detectados en cada estación de quirópteros.

Se puede observar que en la estación 26 es donde más pulsos se han recogido, que corresponde con tipo de vegetación de "Agrícola y Pastos artificiales". Para la estación 28 con 1.314 contactos, corresponde con el tipo de vegetación 40% "Bosquetes" 40% "Agrícola y pastos artificiales" y 20% "Agua". La estación 25 con 1.234 contactos, su tipo de vegetación es "Agrícola y pastos artificiales". La estación 24 que obtuvo 846 contactos, el tipo de vegetación que presenta es "Agrícola y pastos artificiales". La estación 29 con 757 contactos, su tipo de vegetación es "Agrícola y pastos artificiales". La estación 30 con 558 contactos, la vegetación que presenta es 83,33% "Pastizal-Matorral" y 16,67% "Agrícola y pastos artificiales". La estación 27 con 433 contactos presenta una vegetación con un 50% de "Matorral" y 50% "Agrícola y pastos artificiales". La estación 22 registró 268 contactos, siendo su vegetación 50% de "Pastizal-Matorral" y 50% "Agrícola y pastos artificiales". Por último, la estación con menor número de contactos fue la 31, el tipo de vegetación que presenta es un 33,33% de "Riberas", 33,33% "Bosque plantación", 25% "Agrícola y pastos artificiales" y 8,33% "Pastizal-Matorral".

La frecuencia de escuchas en cada estación ha sido la siguiente:

Estaciones	Nº noches con registros	PERIODO				
22	17	Junio-Agosto				
24	19	Junio y Agosto				
25	10	Mayo-Julio				
26	19	Junio-Julio				
27	19	Junio-Agosto				
28	27	Mayo-Julio				
29	14	Mayo y Agosto				
30	20	Mayo y Julio				
31	3	Julio				
Total general	148	Apareamiento, Embarazo y Lactancia				

Tabla 25. № de noches con registros por los aparatos de escucha.

Cabe destacar que es en la estación 26 donde se han recogido un mayor número de pulsos y estuvo 19 noches. En la 31, donde menor número de pulsos se han obtenido, se colocó en julio, por lo que ha registrado menos noches.

Comparando el número de horas con registro con el número de contactos obtenidos se obtiene la media de contactos por noches con registros. A continuación, se muestra la media de contactos:

Figura 45. Media de contactos por noches de registro.

Se observa que las estaciones 25 y 26 son las que han registrado mayor número de contactos.

3.6.4. DISTRIBUCIÓN DE ESPECIES EN FUNCIÓN DE SU CICLO VITAL.

Por último, cabe analizar la distribución de las especies presentes en el área de estudio en función de la época del año, es decir, en función de su ciclo vital. En este apartado se incluyen las grabaciones realizadas durante este cuatrimestre, de mayo a agosto del año 2024.

De manera amplia podemos establecer los siguientes periodos:

El ciclo vital de los quirópteros se divide básicamente en hibernación, embarazo, lactancia y apareamiento para las hembras, y en hibernación, alimentación y apareamiento para los machos. Las hembras se agrupan para la cría a lo largo de la primavera formando colonias en las que los machos están mayoritariamente ausentes. Los partos, generalmente de una sola cría, tienen lugar desde finales de mayo hasta bien entrado julio, dependiendo del clima local y de la especie. Tras un periodo de lactancia aproximado de un mes y medio de duración, las crías alcanzan el tamaño de los adultos y comienzan a volar e independizarse. Al finalizar el verano y en el comienzo del otoño se inicia el periodo de celo y los apareamientos; a este le sigue una fase de acumulación de grasa que constituirá la reserva de energía que asegure la viabilidad de la hibernación, que puede durar hasta 5 meses en lugares fríos. Al finalizar la hibernación, a principios de la primavera, se reactiva el ciclo reproductivo de las hembras, que había sufrido una diapausa generalmente debida a un proceso de fecundación diferida, y da comienzo la gestación.

De manera amplia podemos representar los siguientes periodos:

HIBERNACIÓN

EMBARAZO

LACTANCIA

APAREAMIENTO

De mediados de octubre a mediados de marzo

De mediados de marzo a finales de mayo

Junio y julio

De agosto a mediados de octubre

Tabla 26. Ciclo vital de los quirópteros.

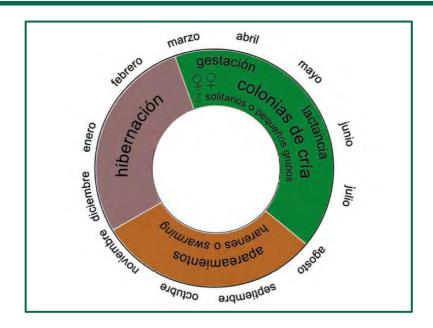


Figura 46. Ciclo biológico anual típico de los murciélagos de zonas templadas. Las fechas que delimitan los diferentes periodos varían dependiendo de la climatología de cada región.

Durante este cuatrimestre se han dado los periodos de apareamiento, embarazo y lactancia. De esta manera, los datos de número de contactos de las distintas especies/grupo se reparten de esta manera a lo largo de las distintas etapas del ciclo biológico de los quirópteros:

Grupos/especies	APAREAMIENTO	EMBARAZO	LACTANCIA	Total
Barbastella barbastellus	1	-	1	2
Hypsugo savii	69	27	98	194
Myotis sp.	1		2	3
Nyctalus sp./Eptesicus sp.	34	101	174	309
Pipistrellus khulii/Pipistrellus nathusii	181	245	579	1.005
Pipistrellus pipistrellus	114	249	887	1.250
Pipistrellus pygmaeus/Miniopterus schreibersii	34	119	73	226
Plecotus sp.	-	18	5	23
Rhinolophus ferrumequinum	3	4	11	18
Rhinolophus hipposideros	-	-	1	1
Tadarida teniotis	18	205	33	256
No identificados	910	521	3.086	4.517
Total	1.365	1.489	4.950	7.804

Tabla 27. Contactos detectados por especie distribuidos según las etapas vitales del cuatrimestre.

Como podemos observar, según los datos obtenidos este cuatrimestre, la etapa con más números de contactos registrados ha sido la lactancia con 4.950, seguido por la etapa de embarazo con 1.489 y por último, la etapa de apareamiento con 1.365 contactos.

Figura 47. Nº contactos por especie distribuidos según etapa

Según las grabaciones y el nº de contactos por grupos de vocalización/ especies que se han detectado en el ámbito en estudio, las especies se distribuyen según la etapa del ciclo vital de la siguiente manera:

INTERVALO HORARIO	APAREAMIENTO	EMBARAZO	LACTANCIA	Total	
00:00/01:00	169	79	475	723	
01:00/02:00	170	69	601	840	
02:00/03:00	169	108	433	710	
03:00/04:00	335	88	488	911	
04:00/05:00	122	83	233	438	
05:00/06:00	48	159	243	450	
06:00/07:00	10	334	66	410	
07:00/08:00	-	25	-	25	
20:00/21:00	-	77	-	77	
21:00/22:00	92	230	161	483	
22:00/23:00	134	121	1.413	1.668	
23:00/00:00	116	116	837	1.069	
Total	1.365	1.489	4.950	7.804	

Tabla 28. Contactos detectados por horas distribuidos según las etapas vitales.

Figura 48. Contactos detectados por horas distribuidos según las etapas vitales.

3.7. MÉTODO DE ESTUDIO DE LA MORTANDAD

3.7.1. DIRECTRICES DEL PLAN DE VIGILANCIA AMBIENTAL

Los periodos de visitas para el control de colisiones a los parques eólicos se rigen por dos periodicidades distintas en función de la época del año, tal como se recoge en las correspondientes Declaraciones de Impacto Ambiental:

Las Majas VII E:

"Se deberá aplicar la metodología habitual en este tipo de seguimientos revisando al menos 100 m alrededor de la base de cada uno de los aerogeneradores. Los recorridos de búsqueda de ejemplares colisionados han de realizarse a pie y su periodicidad debería ser al menos quincenal durante un mínimo de cinco años desde la puesta en funcionamiento del parque, y semanal en los periodos de migraciones. Además, considerando el riesgo más elevado en los aerogeneradores situados en posiciones más cercanas a los ríos Cámaras y Herrera (aerogeneradores números 3 y 5), los

seguimientos bajo ellos se ampliarán hasta los 150 m alrededor de la base de cada uno de los aerogeneradores y con periodicidad semanal durante todo el año.

"Deberá evitarse de forma rigurosa el abandono de cadáveres de animales o de sus restos dentro o en el entorno del parque eólico, con el objeto de evitar la presencia en su zona de influencia de aves necrófagas o carroñeras. Si es preciso, será el propio personal del parque eólico quien deba realizar las tareas de retirada de los restos orgánicos. En el caso de que se detecten concentraciones de rapaces necrófagas debido a vertidos de cadáveres, prescindiendo de los sistemas autorizados de gestión de los mismos en las proximidades del parque eólico que pueda suponer una importante fuente de atracción para buitre leonado y otras rapaces, se pondrá en conocimiento de los Agentes de Protección de la Naturaleza, para que actúen en el ejercicio de sus funciones."

Fotografía 11. Rebaño de ovejas dentro del parque eólico.

De acuerdo con lo especificado en el párrafo anterior, se tendrá en cuenta y se vigilará de forma especial el abandono de cadáveres, dado que en el parque eólico de "Las Majas VII E", existen explotaciones ganaderas ovinas. Para ello, se cuenta con la coordinación de los Agentes de Protección de la Naturaleza del Gobierno de Aragón, con quienes ya se les ha dado aviso para la retirada de

cadáveres frescos, antes de la aparición de aves necrófagas, debido a la proximidad a aerogeneradores.

3.7.2. PERIODO DE VISITAS FIJADO

Las revisiones se han realizado de acuerdo con el Protocolo metodológico de seguimiento de mortalidad de aves y murciélagos en los parques eólicos, elaborado por el Gobierno de Aragón.

Siguiendo estas indicaciones de protocolo de avifauna del Gobierno de Aragón, se ha establecido un periodo de seguimiento SEMANAL durante todo el año.

3.7.3. PROTOCOLO METODOLÓGICO

Este protocolo se ha redactado en base al actual PROTOCOLO TÉCNICO PARA EL SEGUIMIENTO DE LA MORTANDAD DE FAUNA EN PARQUES EÓLICOS E INSTALACIONES ANEXAS, del 2 de febrero del 2023, remitido a este Instituto el 19 de febrero del 2023.

Basándose en la metodología de seguimiento de la mortandad descrito en este protocolo técnico, se ha desarrollado una metodología propia donde se prima la intensificación de las búsquedas en las áreas de menor visibilidad, esto optimiza el tiempo, dedicando 40-50 minutos en cada revisión. Esta propuesta se mandó al Servició Provincial de Zaragoza, dado que se planteó la posibilidad de modificar algunos de sus puntos. Actualmente se espera la respuesta del órgano competente, mientras, se aplica la metodología propia.

En primer lugar, de forma previa a la entrada del técnico al parque eólico, se avisa mediante mensaje al responsable del parque y al coordinador de los Agentes de Protección de la Naturaleza de la comarca correspondiente.

Los recorridos se realizan mediante círculos concéntricos y/o en bandas cubriendo un radio de 120 m (1,5 veces los 65m de pala + buje). Debido al estado de la vegetación y la orografía del terreno (barrancos, vegetación arbórea y arbustiva espesas, inclinación del terreno superiores al 50%), el área de prospección puede verse reducida. Desde principios de abril los campos de cultivo sembrados empiezan a adquirir una altura que no permite

el paso sin dañarlo. Estas áreas quedan fuera de la revisión hasta la época de la siega, a finales de mayo y principios de junio, cuando se realiza una revisión más exhaustiva en el hallazgo de restos. La superficie prospectada también se ve afectada de las condiciones climáticas adversas: precipitación prolongada, vientos muy fuertes y olas de calor. En terrenos privados vallados se solicita permiso para entrar cuando desde fuera se han detectado carcasas.

La revisión de las líneas de alta tensión se realiza a pie, de un apoyo a otro, siguiendo de forma lineal la infraestructura y alrededor de la base de cada torre. Al tratarse de varias LAAT y de gran longitud, la tarea se ha divido en tramos, realizando la siguiente visita en el apoyo anteriormente revisado. Los datos se recogen mediante una herramienta (Zamiadroid) con la que se toman los datos georreferenciados, directamente en campo. En el formulario creado, se rellena con los siguientes datos:

- Foto
- Nombre del clúster
- Parque eólico
- Nº de aerogenerador
- Sistema de DtBird (si tiene o no)
- Pintado de palas (si tiene o no)
- Especie encontrada
- Categoría de protección (Catálogo de especies amenazadas de Aragón): EE, VU, SAH, IE o no catalogada
- Sexo
- Edad
- Distancia al AEG
- Radio de búsqueda (0-25, 25-50, 50-75, 75-100, 100-125, 125-150).
- Estado del ave (partido, entero...)
- Entorno donde es encontrado (Cultivo, labrado, vegetación natural, pista, plataforma, base AEG)
- Tiempo estimado de la muerte
- Aviso a APN: mensaje o llamada
- Observaciones
- Coordenadas UTM y Geográficas

- Fecha y hora
- Nombre del técnico

Para las tablas de siniestralidad reportadas al Gobierno de Aragón, de acuerdo a la COMUNICACIÓN ACERCA DE LA PUBLICACIÓN EN SEDE ELECTRÓNICA DE LOS PLANES DE VIGILANCIA AMBIENTAL (PVA) y NORMAS DE ENTREGA DE LADOCUMENTACIÓN CORRESPONDIENTE A LOS PVA, se toman además los siguientes datos:

- Estado del cadáver: herido, fresco, descompuesto, semidescompuesto, consumido, restos, entero, fragmentado.
- Tipo de restos encontrados: Íntegro, restos óseos, plumas o pies, plumas o piel y restos óseos, fragmento del cuerpo u otro.
- Actuación: Aviso a APN, SEPRONA, Traslado a depósito, traslado CRFS, otro

Posteriormente, para facilitar el seguimiento de la mortandad, se añaden los siguientes campos:

- Fecha de la última visita. (Facilitar así el trabajo de búsqueda de la colisión en los visionados de DtBird).
- Congelador donde se han colocado (SET PE)

Al finalizar la revisión del parque, se avisa de nuevo y se mandan los datos diarios de mortandad por parque, mediante correo electrónico: al responsable de parque y al coordinador de los APN de la comarca. Las aves o especies catalogadas, deben ser recogidas por los agentes de protección de la naturaleza y en los casos en los que se han localizado, se les ha avisado mediante llamada telefónica para que puedan pasar a recogerlas.

Las aves no catalogadas, son recogidas en bolsas, etiquetadas y llevadas a los congeladores que dispone cada parque, en las instalaciones de las subestaciones eléctricas. Para cada ave se anotan los siguientes datos en las etiquetas correspondientes, de acuerdo con el Protocolo de recogida de aves:

- Fecha
- Clúster y parque eólico
- Término municipal
- Nº aerogenerador
- Especie
- Coordenadas UTM

Número del precinto

La cobertura de prospección media estimada, es decir, el porcentaje de suelo en el que resulta visible la presencia de cualquier resto independientemente del tamaño, presenta variaciones considerables en función de la estación del año y del tipo de vegetación presente. Sin embargo, a modo de resumen, las coberturas de prospección por aerogenerador son las siguientes:

AEROGENERADOR	VEGETACIÓN DOMINANTE	COBERTURA
LM7E-01	Vegetación mediterránea /Carrascas	50%
LM7E-02	Cultivo cereal	75%
LM7E-01	Cultivo cereal	50%
LM7E-02	Cultivo cereal	85%
LM7E-03	Cultivo cereal	75%
LM7E-04	Cultivo cereal	45%
LM7E-05	Cultivo cereal	85%

Tabla 29. Vegetación dominante y porcentajes de cobertura estimada de prospección del suelo en un radio de 60 metros alrededor del aerogenerador.

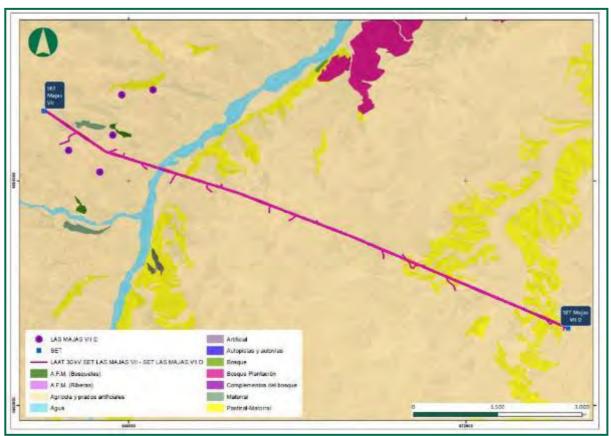


Figura 49. Mapa Forestal de España. Escala 1:50.000.

Fuente: Ministerio de Agricultura, Alimentación y Medio Ambiente.

Después de analizar los datos referentes a la vegetación dominante, su porcentaje de cobertura, mediante la estima de su desarrollo vegetativo en el entorno del aerogenerador, así como la orografía y la accesibilidad, se obtiene que la cobertura de prospección media por aerogenerador es del 44%.

AEROGENERADOR	% DE SUPERFICIE DE PROSPECCIÓN
LM7E-01	50%
LM7E-02	15%
LM7E-03	25%
LM7E-04	55%
LM7E-05	15%

Tabla 30. Superficie estimada de prospección por aerogenerador, en un radio de 60 metros a partir de la torre.

Fotografía 13. Tipos de uso del suelo en las áreas de búsqueda: Cultivo cereal sembrado, campo labrado, almendros, vegetación natural, cereal antes de la cosecha, y rastrojera.

Fotografía 13. Estado de la vegetación en campos de cultivo de cereal en el área de prospección.

3.7.4. PARÁMETROS DE MORTANDAD

A los valores de mortandad recogidos en campo, se les debe aplicar un incremento debido a que un porcentaje variable de las muertes no son halladas. Para dar con el valor real de la mortandad, se deben aplicar estas dos tasas: La tasa de permanencia, relacionada con la depredación y la tasa de detección de los técnicos que realizan la vigilancia, relacionada con las condiciones físicas del terreno (relieve o vegetación) que se encuentran los técnicos de campo y que afectan a la dificultad para encontrarlos.

Para introducir estas tasas en la estimación de mortalidad se realiza tanto un test de permanencia de cadáveres, como un test de detectabilidad.

El test de detectabilidad se realiza una vez por cada uno de los técnicos que realizan los seguimientos de mortalidad (en cada uno de los hábitats presentes en la zona de estudio). El test de permanencia se realiza durante el primer año de la vigilancia ambiental durante cuatro periodos al año, coincidentes con las estaciones del año.

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Con estos valores se pretende corregir el valor de mortandad, considerando la fracción de cadáveres que no son detectados o encontrados.

Con estas dos tasas, junto con los datos de mortandad recogidos, se estima la tasa de mortalidad.

3.7.4.1. Tasa de detectabilidad

Durante el este cuatrimestre no ha sido necesario repetir esta prueba, puesto que los usos del suelo no han variado. Pero dado que los valores de esta prueba, junto con los del test de permanencia, son necesarios para calcular la tasa de mortalidad, repetimos los valores de la tasa de detectabilidad calculados en el primer cuatrimestre del segundo año de seguimiento.

Para establecer esta tasa se realiza un test que tiene como objeto corregir el valor de mortandad considerando la capacidad visual del observador y a las condiciones físicas del terreno.

Esta prueba es personal y los resultados se aplicarán al observador que ha llevado a cabo las visitas, y los datos aportados por él en cada uno de los terrenos que se describen a continuación.

Los terrenos propuestos, sobre los que se ha realizado la prueba, son:

- vegetación natural (matorral bajo): Una vez por observador.
- vegetación caducifolia: Una vez por observador.
- cultivo de cereal. Una vez por observador.
- suelo desnudo o labrado. Una vez por observador.

Se ha considerado usar el terreno de "suelo desnudo o labrado" para agrupar en una sola prueba, los terrenos de vegetación caducifolia y cultivo de cereal, en invierno.

3.7.4.2. Material y método de ejecución

Como material se puede utilizar animales de granja tipo: codorniz, ratón o paloma, se podrá emplear también las aves encontradas durante la revisión de mortandad. Se usaron al menos 10 piezas. Para la ejecución de esta prueba en AGUASVIVAS, el material utilizado fueron codornices de granja.

Es necesario ser ayudados por una segunda persona, las piezas son colocadas en cada uno de los terrenos, sin ser conocedor del lugar de posición. El ayudante colocará las piezas en cada uno de los

terrenos señalados, repartiéndolos de forma proporcional. Para cada pieza colocada, se recogen los siguientes datos:

- Fecha y hora
- Técnico que realiza la prueba
- Nº identificación de la pieza
- Coordenadas UTM
- Tipo de terreno

Una vez finalizada la prueba, se hace uso de las coordenadas, para recuperar las piezas no detectadas.

3.7.4.3. Resultado

La prueba fue llevada a cabo por cada uno de los cuatro técnicos que compone el equipo, que revisa la mortandad de este proyecto.

Fotografía 14. Técnico tomando los datos de las piezas.

El resultado de la TD, para cada uno de los técnicos y de los terrenos, fue:

- Vegetación natural (matorral) 90 % / técnico

- Cultivo de cereal en rastrojera 90 % / técnico

- Vegetación caducifolia 70 % / técnico

Plantación de frutales (almendros)
 90 % / técnico

- Suelo desnudo o labrado 90 % / técnico

Teniendo en cuenta el tanto por ciento del tipo de terreno que comprende el entorno de las áreas de búsqueda, se calcula el valor detectabilidad en proporción a la extensión de cada tipo de vegetación

	Detectabilidad	% terreno
Suelo desnudo	90	75
Cultivos*	90	20
Vegetación natural	90	5

Tabla 31. Porcentaje de la cobertura vegetal en el área de los AEG. (*Plantación de frutales le corresponde un valor muy bajo para tenerlo en cuenta como valor independiente)

Teniendo en cuenta que corresponden al 75% a suelo desnudo, donde se en el test se obtuvo un 90% de detectabilidad, la capacidad de detección del observador (p), es del **90%.**

 $p = n^{o}$ individuos detectados / n^{o} de individuos Depositados

Capacidad de detección media con vegetación y alta en suelo desnudo

El observador detecta menos de la mitad de la fauna colisionada, siendo mucho más probable si cae en terreno libre de vegetación. Lógicamente este valor es mucho más elevado en caso de aves de gran envergadura, para todo el tipo de terrenos, a excepción de los cultivos donde las aves quedan totalmente cubiertas por la vegetación. Este 0,90 de detectabilidad es la cifra usada en la fórmula de la mortalidad.

3.7.4.4. Tasa de permanencia

De acuerdo con el protocolo de revisión de la mortandad en parques eólicos publicado por el Gobierno de Aragón, la tasa de permanencia debe realizar una vez en cada estación. En el anterior cuatrimestre se realizó la de primavera, en este segundo se ha realizado la correspondiente al verano.

En la Tasa de Permanencia (TP) se pretende calcular el tiempo que transcurre desde que los ejemplares colisionados caen al suelo, hasta que son encontrados por un depredador. Esta tasa, se realiza para cada uno de los tipos de hábitats o vegetación que representa el parque. Como: Pinar, matorral, pastizal, cultivo secano, erial o barbecho, roquedo, etc.

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

En los parques eólicos pertenecientes al clúster AGUASVIVAS se han escogido 4 tipos de vegetación:

- Almendros
- Vegetación natural (Matorral bajo)
- Cultivo de cereal
- Suelo desnudo o erial

3.7.4.5. Material y método de ejecución

Para ello, se colocan entre 5 y 10 animales muertos para cada uno de los hábitats, y se toma la ubicación GPS para ejemplar. Los animales muertos a utilizar, pueden ser los propios ya encontrados en los aerogeneradores, o se pueden comprar, sirviendo: ratones, codornices o perdices, en función del tamaño. Una vez colocados y registrado, la revisión debe ser diaria.

Para esta prueba, se han usado codornices de granja, 5 piezas por cada tipo de vegetación. Para cada pieza colocada, se recogen los siguientes datos:

- Fecha y hora
- Parque eólico
- Nº identificación de la pieza
- Coordenadas UTM
- Tipo de terreno
- Fecha de desaparición de la pieza

La realización de esta prueba se debe realizar lejos de los aerogeneradores o en periodos de parada, para no provocar colisiones. Se aprovecharon las horas del final del día para conocer la depredación nocturna.

Fotografía 15. Pieza colocada en terreno de campo de cultivo en rastrojera.

En los parques del clúster Aguasvivas, se realizó la prueba a finales del periodo postnupcial del año 2021.

3.7.4.6. Resultado

A continuación, se muestra el número de piezas depredadas en cada visita, para cada uno de los tipos de terreno donde se ha realizado la prueba. Las visitas se realizaron durante las mañanas, habiendo transcurrido en la primera visita tan solo 15h (toda la noche y media mañana) y en las siguientes, cada 24h aproximadamente desde la anterior visita. A excepción del terreno en rastrojera, que se inició la prueba por la mañana con el fin de medir la depredación diurna.

TIPO DE TERRENO	Visita 1 (11h)	Visita 2 (40h)	Visita 3 (65h)	Visita 4 (90h)
LABRADO	100%	0	0	0
MATORRAL	100%	0	0	0
FRUTAL	100%	0	0	0
RASTROJERA	-	100%	0	0

Tabla 32. Número de piezas depredadas por tipo de terreno y visita.

El resultado de la prueba para el conjunto de los tipos de vegetación resultó ser que en la primera noche se depredaron el 100%, 11h después de colocar las piezas. En el terreno en rastrojera, se obtuvo que 24h después de depredaron el 100% de las piezas. Por lo tanto, el **tiempo de depredación total promedio es menor a 1 día.**

3.8. ACCIDENTALIDAD DETECTADA EN EL PARQUE EÓLICO

Este apartado recoge los resultados de accidentalidad en las infraestructuras generadas en el Parque eólico LAS MAJAS VII E, en el segundo cuatrimestre 2024.

3.8.1. DATOS DE MORTANDAD

A continuación, se muestra la tabla de mortandad de las aves y murciélagos encontrados durante la revisión de los aerogeneradores. En algún caso, se han recogido restos de aves y plumas, que, a pesar de no poder certificar la causa real de la muerte, se han identificado y anotado la especie.

FECHA	AEROG.	NOMBRE	ESPECIE	EDAD	SEXO	ARAGON	NACIONAL	LIBRO ROJO
14/05/2024	LM7E 04	Calandria común	Melanocorypha calandra	Indeterminado	Indeterminado	-	LESRPE	LC
28/05/2024	LM7E 01	Calandria común	Melanocorypha calandra	Indeterminado	Indeterminado	-	LESRPE	LC
13/08/2024	LM7E 03	Murciélago montañero	Hypsugo savii	Indeterminado	Macho	-	LESRPE	LC
13/08/2024	LM7E 01	Ruiseñor común	Luscinia megarhynchos	Adulto	Indeterminado	-	LESRPE	LC
20/08/2024	LM7E 03	Cernícalo primilla	Falco naumanni	Subadulto	Macho	VU	LESRPE	VU

Tabla 33. Mortalidad detectada en el periodo se seguimiento (mayo – agosto 2024).

Todos los restos son identificados en el momento de la detección y llevados a los congeladores que dispone el parque, previamente envasados y etiquetados correctamente. Las especies catalogadas, son comunicadas al Coordinador Medioambiental y se actúa según marque dicho Agente. Después de cada jornada se remiten las fichas por email al Coordinador de los APN.

Durante el cuatrimestre se han llevado a cabo dos retiradas de aves de los congeladores, de la SET Las Majas VII, llevado a cabo por un Agente de Protección de la Naturaleza, los días 20 de junio y 21 de agosto de 2024.

Dando cumplimiento al *Protocolo sobre recogida de cadáveres en parque eólicos, 6 de noviembre de 2020,* se han usado precintos numerados en las bolsas de los cadáveres hallados.

En relación con las especies colisionadas detectadas durante la revisión, se muestran a continuación el número de colisiones de cada especie:

Especie	Nº
Falco naumanni	1
Hypsugo savii	1
Luscinia megarhynchos	1
Melanocorypha calandra	2
Total general	5

Tabla 34. Tabla de mortandad por especie.

Son 4 especies las afectadas, todas de pequeña envergadura, excepto el cernícalo primilla. El cernícalo primilla aparece catalogado como "Vulnerable" a nivel regional.

A continuación, se muestra el gráfico que representa los valores de la tabla anterior en grupo taxonómico:

Figura 50. Mortalidad registrada por especie en el PE LM7E. 2ºC 2024.

A continuación, se muestra el gráfico con el número de colisiones detectadas por especie durante el año de estudio.

Figura 51. Mortalidad registrada por especie en el PE Las Majas7E durante el 2ºC 2024.

En la siguiente figura, se muestran las colisiones por aerogenerador y especie:

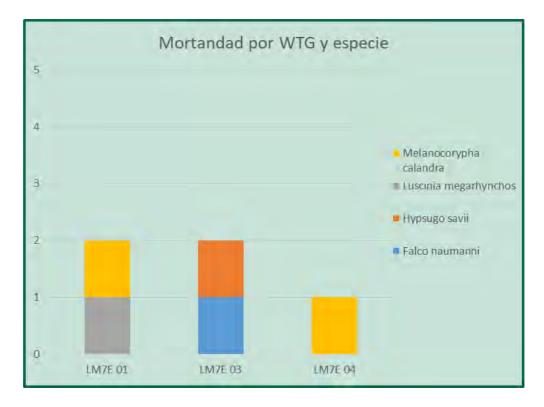


Figura 52. Mortalidad registrada por WTG en el PE Las Majas7E durante el 2º Cuatr. 2024.

Las colisiones se han producido en los aerogeneradores LM7E-01, LM7E-03 y LM7E-04, destacando en los dos primeros dos colisiones por aerogenerador. Se han producido dos colisiones de calandria común, pero han sido en dos aerogeneradores diferentes.

En la siguiente figura, se muestran las colisiones de cada especie recogidas en cada mes del cuatrimestre:

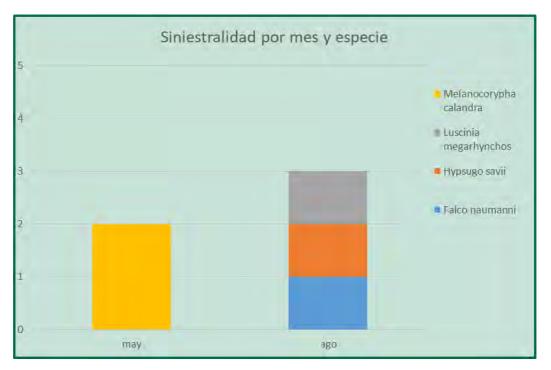


Figura 53. Mortalidad registrada por mes, para el periodo en estudio en el PE Las Majas7E.

Como podeos observar en el gráfico, se dieron 2 colisiones en mayo y 3 en agosto. Las colisiones de la calandria común fueron las dos en mayo.

La intensificación de la prospección en las áreas de búsqueda de los aerogeneradores marcada por el protocolo actual, mediante el seguimiento por el personal con periodicidad semanal, ha dado como resultado una detectabilidad superior de cadáveres a la obtenida hasta ahora. Esto se debe principalmente al aumento del número de visitas. Aunque el tiempo de permanencia es de un día como mucho en la mayoría de los casos, se reduce el tiempo de exposición del cadáver y aumenta en número de casos de encontrarse con colisiones recientes. Debido a esto, se produce un sesgo entre los datos de siniestralidad actuales y los obtenidos hasta ahora.

Desde la puesta en explotación en 2021 hasta el 2024, la evolución de los valores de siniestralidad anual correspondiente al mismo periodo cuatrimestral (2º cuatrimestre) para cada una de las especies es la siguiente:

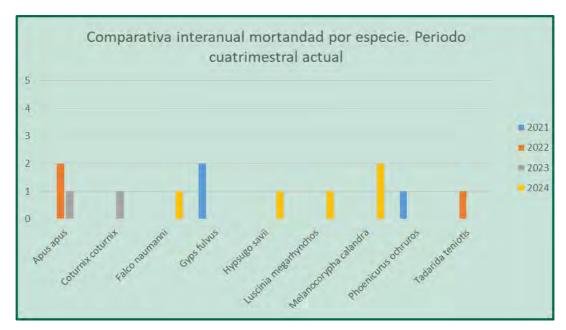


Figura 54. Mortalidad interanual para el 2º cuatrimestre por especie, en el PE Las Majas VII E.

Cabe destacar que, en cuatro años de seguimiento, durante el segundo cuatrimestre del año, la especie más afectada es el vencejo común (*Apus apus*).

En la siguiente figura se muestra los valores de siniestralidad anual por WTG a lo largo de los cuatro años de seguimiento, durante el periodo cuatrimestral actual (mayo-agosto):

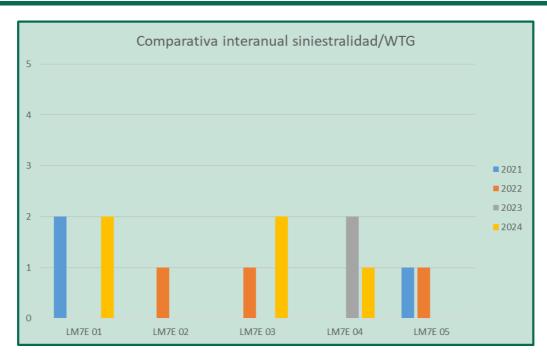


Figura 55. Mortalidad interanual para el 2º cuatrimestre por posición, en el PE Las Majas VII E.

A lo largo de los cuatro años de seguimiento durante el segundo cuatrimestre del año, el WTG con mayor número de colisiones detectadas es LM7E-01.

En la siguiente figura se muestra los valores de siniestralidad anual por mes a lo largo de los cuatro años de seguimiento, durante el periodo cuatrimestral actual (mayo-agosto):

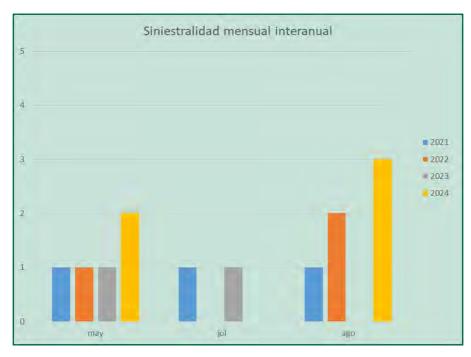


Figura 56. Mortalidad interanual para el 2º cuatrimestre por mes, en el PE Las Majas VII E.

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Como se puede observar, es el mes de agosto el periodo donde más colisiones se han producido durante los cuatro años de seguimiento correspondientes con el segundo cuatrimestre del año y destacar que durante el mes de junio no se han detectado colisiones.

A lo largo de este cuatrimestre, se han detectado 5 individuos, siendo uno de ellos un quiróptero. El cernícalo primilla está catalogado como vulnerable a nivel autonómico y el resto recogidos en el Listado de Especies en Régimen de Protección Especial. Debido a la colisión de un cernícalo primilla (*Falco naumanni*) se procedió a la parada precautoria de la máquina LM7E-03. De manera supletoria y puntual, se llevó a cabo jornadas de 12 horas de Vigilancia Ambiental con el objetivo de mandar orden de parada preventiva a las máquinas que tuvieran riesgo de colisión, en días de activación.

Los meses con mayor siniestralidad acumulada son mayo y agosto que corresponden con el final y el inicio de la migración prenupcial y postnupcial respectivamente.

Mencionar, que, durante la revisión de las líneas eléctricas de evacuación, no se han detectado ninguna colisión o muerte por electrocución.

Las instalaciones están construidas de acuerdo con el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión (Real Decreto 223/2008, de 15 de febrero). Cuenta con aisladores de vidrio de un metro y salvapájaros en el cable superior.

Al contrario de lo que ocurre con otras infraestructuras, en el caso de las líneas eléctricas, donde se ha conseguido certificar un grupo amplio de medidas correctoras que reducen la mortalidad que producen sobre las aves del entorno, no ocurre lo mismo con el caso de los parques eólicos, donde según las discusiones de los autores de estudios fiables sobre estas infraestructuras, ni siquiera están claros los factores que hacen que las tasas de mortalidad varíen entre parques.

Fotografía 16. Apoyos de la LAAT de evacuación

Fotografía 17. Detalle del sistema salvapájaros.

3.8.2. CÁLCULOS DE ESTIMACIÓN DE LA MORTANDAD ANUAL

La mortalidad anual, es la estimación del total de colisiones que se producen a lo largo del año, teniendo en cuenta una capacidad de detección inferior al cien por ciento, y la desaparición de los ejemplares colisionados a causa de los depredadores.

Para el cálculo de mortandad real (M) en el parque eólico al cabo de un año, se estima a partir de los datos de mortandad y de los valores de las tasas anteriores. La ecuación que ofrece un valor aproximado considerando los valores de desviación, es la propuesta por Erickson et al (2003).

$$M = \frac{N * I * C}{k * tm * p}$$

N: Número total de aerogeneradores

I: Intervalos entre visitas de búsqueda (días)

C: Número de cadáveres recogidos en el periodo de estudio

k: Número de aerogeneradores revisados

tm: Tiempo de permanencia (días)

p: capacidad de detección del observador

Para el cálculo de la mortandad anual, se parte del número total de cadáveres recogidos durante el año, listados recogidos en los tres informes cuatrimestrales, y se usará un valor de visitas medio, teniendo en cuenta los distintos periodos de visitas.

En este periodo cuatrimestral, se han detectado 5 cadáveres de aves en un promedio de visitas de 19.

Nº total de cadáveres [C]	5
Periodo medio visitas [I]	7
AEG [N] [k]	5
T. permanencia [tm]	1
T. detectabilidad [p]	0,90
Mortandad anual [M]	38,88

Tabla 35. Datos para el cálculo de la mortandad anual.

El valor de (M); el número de mortandad anual en el PE de LM7E, se estima en 38,88 ejemplares.

El cálculo de la tasa de mortalidad (Ms), relacionando el número de cadáveres encontrados (Ns) con el número de aerogeneradores analizados (E).

$$Ms = \frac{Ns}{E}$$

El valor de la mortalidad anual (Ms) es de 1. Entendiéndose por mortalidad, por la probabilidad de que un animal encuentre la muerte en el parque eólico por causas directamente relacionadas por la presencia de este. En este caso, al usar el valor de cadáveres detectados, se excluye todos aquellos que recogen la tasa de detectabilidad y la tasa de permanencia.

3.8.1. COMPARATIVA INTERANUAL

meses al año y semanal durante cuatro, a ser todo el año semanal. Esto introduce un sesgo en la siniestralidad detectada y no permite una comparativa con lo realizado hasta ahora. Para ello se ha hecho uso del cálculo de la mortandad estimada que permite ajustar el valor de la periodicidad del numerador, obteniendo un valor estimado de mortalidad equiparable entre distintos años con periodicidades distintas. De esta manera se ajusta la mortalidad en función de la siniestralidad detectada.

En la comparativa interanual de este valor de la mortandad estimada, durante los años 2021-2023 la periodicidad media de cada visita era de 12,3 días, mientras que durante el 2024 ha sido de 7 días. Teniendo esto en cuenta y aplicando en la fórmula la siniestralidad detectada en cada periodo y manteniendo el resto de los valores fijo, se ha obtenido un valor representada en la siguiente figura:

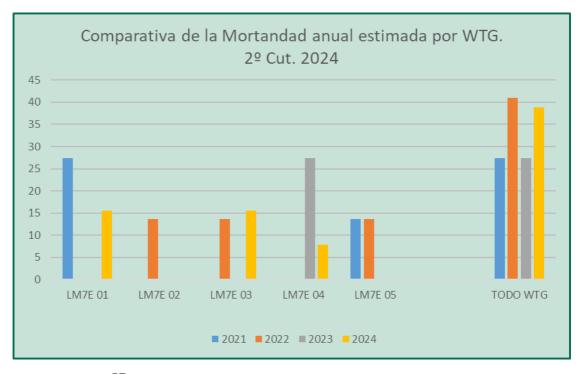


Figura 57. Comparativa del valor de la mortandad estimada para cada WTG y por año.

De este modo, se observa que, a lo largo del seguimiento de la siniestralidad durante cuatro años en los meses de enero a abril, el presente año ha obtenido un aumento de la mortandad estimada del 30,7% con respecto al primer año y al año pasado.

A modo de resumen, se obtiene que, a lo largo de este cuatrimestre, han colisionado 5 individuos de cuatro especies distintas, todas paseriformes residentes. La mortalidad anual ha sido de 1

colisión/WTG. Se ha obtenido un valor de mortandad anual teórico de 39 ejemplares. En comparación con los años anteriores, la mortandad anual estimada, se ha aumentado un 30,7% con respecto al 2021 y 2023. Los meses con mayor siniestralidad acumulada son mayo y agosto que corresponden con el final y el inicio de la migración prenupcial y postnupcial respectivamente.

3.9. SISTEMAS ANTICOLISIÓN DE AVIFAUNA Y RESULTADOS

De acuerdo con las directrices marcadas por el INAGA, se aplicaron medidas preventivas y correctoras, en relación a la instalación de medidas de innovación e investigación y a la prevención y vigilancia de la colisión de aves mediante los siguientes sistemas. Tras el estudio previo de avifauna, incluido en el estudio de impacto ambiental, se seleccionaron las posiciones óptimas para aerogeneradores allá donde hubiera mayor actividad y peligro, y así evitar colisiones (INAGA, 2018).

3.9.1. PINTADO DE PALAS

La medida preventiva del pintado de palas, consiste en una coloración en rojo de las puntas de las aspas de un aerogenerador. Según un estudio reciente realizado en Noruega (May R., 2020), "se puede reducir la mortandad hasta un 72% donde tiene un mayor efecto en aves rapaces". El estudio se llevó a cabo en un parque eólico situado en un archipiélago frente a la costa, compuesto por 68 turbinas (altura del eje: 70; longitud de la pala del rotor 40 m) donde se pintó de negro una de las tres palas en 4 de los aerogeneradores. Se realizó una búsqueda continua de cadáveres con perros, antes y después del pintado de la pala. Finalizado a finales del 2016, representando siete años y medio antes y tres años y medio después del tratamiento.

Fotografía 18. Pintado de palas en los aerogeneradores.

PE "LAS MAJAS VII E"

• Aerogeneradores con pintado de palas: 03 y 05.

3.9.2. SISTEMAS DE DETECCIÓN Y DISUASIÓN (DTBIRD)

Las Declaraciones de Impacto Ambiental de los parques eólicos del clúster incluyen los siguientes condicionantes:

"Instalación de medidas de innovación e investigación en relación a la prevención y vigilancia de la colisión de aves que incluirán el seguimiento de aerogeneradores mediante sistemas de cámara web, la instalación de sensores de disuasión y/o parada en las posiciones óptimas para evitar la colisión de aves en vuelo con los aerogeneradores y la señalización de las palas de los aerogeneradores para

mejorar su visibilidad para las aves (de conformidad con las directrices que pueda establecer la Agencia Estatal de Seguridad Aérea)."

El Sistema DtBird es un dispositivo autónomo anticolisión que supervisa el entorno aéreo y detecta aves en tiempo real. El sistema es capaz de tomar decisiones en relación con las detecciones de aves efectuadas tales como la emisión de alarmas disuasorias para alejar a estas aves y reducir el riesgo de colisión con los aerogeneradores.

Fotografía 19. Sistemas de detección y disuasión instalados en aerogenerador.

El sistema está compuesto por cámaras de Alta Definición que monitorizan 360º alrededor del aerogenerador detectando las aves en tiempo real, mientras almacenan vídeos y datos para su posterior análisis. Es capaz de detectar las aves de tamaño medio y grande, en tiempo real, de manera que antes de que el ave entre en zona de riesgo, los sistemas de altavoces emiten sonidos en frecuencias graves, avisando al ave de la presencia de las palas, e intensificando el aviso en caso de seguir el peligro.

En los parques eólicos del clúster, el sistema DtBird se ha implantado en los siguientes aerogeneradores:

PE "LAS MAJAS VII E"

• Aerogeneradores con sistema DtBird: 04 y 05.

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

3.9.3. Análisis de visionado de videos

Cada uno de los videos recogidos por el sistema DtBird son recopilados y clasificados de acuerdo con: la fecha de la grabación, el WTG desde el que se ha realizado la detección, estado del rotor (en movimiento o en parada) y el sistema anticolisión accionado (advertencia y/o desalentador). Posteriormente, es un técnico quien debe visionar los vídeos para determinar la causa de accionamiento del sistema (El sensor de movimiento, conectado a las cámaras, se acciona sin discriminar la causa. Generalmente son aves, pero puede causarlos también vehículos aéreos, efectos de la meteorología, insectos, etc.) y distinguir la especie o el género o familia, o en caso contrario, discriminar tipo de ave, y su tamaño (ws 30-60; 60-120; 120-180 cm). En caso de no tratarse de un vuelo de aves, se considera como falso positivo (FP).

El objetivo del visionado de vídeos es identificar y cuantificar los vuelos próximos a los aerogeneradores, y obtener información sobre el comportamiento. Por otro lado, la grabación misma de las colisiones, evidencia las causas de las colisiones y arrojan nuevos valores de antecedentes de eventos de mortandad para perfeccionamientos del sistema (como se ha visto en apartados anteriores, que algunas de las aves migradoras pueden ser especies diana, al realizar el paso en bando).

Los aerogeneradores del parque eólico Las Majas 7E, con sistema de DtBird instalado son el AG04 y AG05. Durante los cuatro meses, de los 2 aerogeneradores, se han recogido un total de 1.324 grabaciones en bruto, de los cuales se han visionado 181 grabaciones. De media, se generan 54,5 grabaciones/día.

A pesar de que se parte de grabaciones, a menudo, no es posible identificar por especie, se clasifican en grupos, generalmente en aves de gran tamaño (120-180cm), rapaces, aves de mediano tamaño (60-120cm), pájaros (<60cm). Las filas coloreadas en azul, corresponden a aves clasificables como "ave de gran envergadura", las de color amarillo como "rapaces" y verde de "ave de tamaño mediano", rosa como "pájaros" o "aves de pequeño tamaño" y gris como "murciélago".

AEROGENERADOR				AG 04			
Periodo de servicio			01/05/20	24-31/0	08/2024		
	Vuel	os no ana	alizados 2482				
Famasia (Cuura	Vue	elos	Duració	Aves	Tasa de flujo		
Especie/Grupo	Nº	%	Horas totales)	%	Medio)	Nº	Nº Aves/hora
Ave de gran tamaño (ws 120-180 cm)	7	9,50	0:05:52	14.4	50	10	0.03
Rapaz de gran tamaño	14	18,90	0:09:20	22.9	40	15	0.05
Falco sp.	1	1,40	0:00:02	0.1	2	1	0.00
Gyps fulvus	12	16,20	0:12:05	29.6	60	23	0.08
Ave mediano tamaño (ws 60-120 cm)	3	4,10	0:01:42	4.2	34	3	0.01
Rapaz mediano tamaño	4	5,40	0:02:10	5.3	32	4	0.01
Rapaz	6	8,10	0:02:16	5.6	23	6	0.02
Ave pequeño tamaño	3	4,10	0:00:18	0.7	6	3	0.01
Ave pequeño tamaño (ws 30-60 cm)	8	10,80	0:01:32	3.8	12	8	0.03
Ave indeterminado	9	12,20	0:03:13	7.9	21	10	0.03
Ave gran tamaño	2	2,70	0:01:53	4.6	56	3	0.01
Ave muy pequeño tamaño (ws 10-30 cm)	5	6,80	0:00:25	1	5	6	0.02
Total	74	100	0:40:48	100	33	92	0.31

Tabla 33. Registro de vuelos analizados AG 04

AEROGENERADOR			AG	6 05			
Periodo de servicio	01/05/2024-31/08/2024						
Vuelos no analizados 1338							
	Vuelos Duración del vuelo			Aves	Tasa de flujo		
Especie/Grupo	Nº	%	Horas totales	%	Medio	Nº	Nº Aves/hora
Ave gran tamaño (ws >180 cm)	2	100,00	0:02:51	100	86	6	0.05
Total	2	100	0:02:51	100	86	6	0.05

Tabla 34. Registro de vuelos analizados AG 05

Figura 58. Porcentaje de vuelos por especie/grupo AG04.

Figura 59. Porcentaje de vuelos por especie/grupo AG05.

En el aerogenerador 04 la franja horaria con mayor actividad ha sido de 16 a 17 horas y en el AEG05 de 12 a 14. Hay que tener en cuenta que, el número de vídeos visualizados, no es igual en cada franja horaria.

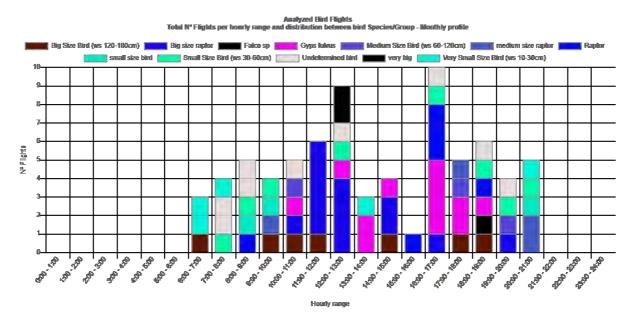


Figura 60. Vuelos analizados por especie, perfil cuatrimestral por horas. WTG LM7E-04 Fuente: DtBird.

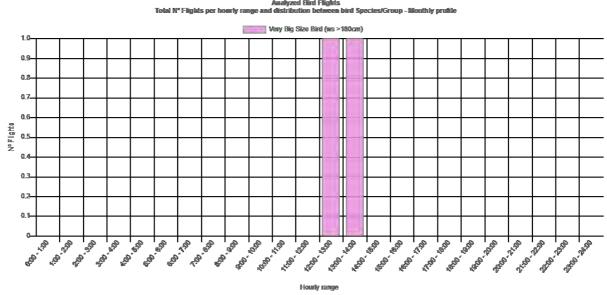


Figura 61. Vuelos analizados por especie, perfil cuatrimestral por horas. WTG LM7E-05 Fuente: DtBird.

Las búsquedas de colisiones en las grabaciones de vídeo generados por los sistemas de DtBird, se realizan utilizando los datos proporcionados en campo, a raíz de la mortalidad detectada. Utilizando el valor de tiempo estimado de la muerte, fecha de detección y nº de aerogenerador, se visionan

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

aquellos vídeos preseleccionados que corresponden con la fecha y aerogenerador de la colisión y se visualizan los vídeos en torno a esas fechas estimadas.

Durante este cuatrimestre se ha realizado búsquedas de forma dirigida en torno estas posiciones y en distintas franjas horarias, procurando obtener datos para cada horario del día y de forma homogénea. Todas las colisiones producidas por aves, no se han dado en aerogeneradores con sistemas de detección, por lo que no se han podido recabar la información que estos sistemas captan.

3.9.4. RESULTADOS

Gracias a los vuelos registrados por los sistemas de detección (DtBird) y a los datos aportados por el trabajado de visionado de vídeos, ha permitido analizar y testear estos sistemas y sacar conclusiones de acuerdo con su eficacia, y a la contribución al conocimiento científico, con el fin de reducir el impacto que se produce a la avifauna.

El resultado de mortandad cuatrimestral, de aves en los aerogeneradores con sistemas DtBird ha sido la siguiente.

	DtB	ird		INCID	ENCIA
PE	NO SI		TOTAL	NO	SI
LM7E 03	1	0	1	0,09	0,00
Total	1	0	1	0,09	0,00
Ratio	0,09	0,00	80,0		

Durante este cuatrimestre no se ha producido una colisión de aves con envergadura mayor a 60 cm.

Uniendo los datos de número de vuelos que se obtienen gracias al sistema de detección de DtBird, se han recopilado, para cada posición, los vuelos totales y se ha calculado una ratio de mortalidad en función del número de colisiones/vuelos:

	PE WTG	DTBird		1º cuatrimestre			2º cւ	ıatrimes	tre	3º cua	3º cuatrimestre		
PE		DETECCIÓN	DISUASIÓN	Total, colisiones	Total, vuelos	Ratio	Total, colisiones	Total, vuelos	Ratio	Total, colisiones	Total, vuelos	Ratio	
LM7E	1	NO	NO	1	-	-	0	-	-	0	-		
LM7E	2	NO	NO	0	-	-	0	-	-	0	-	-	
LM7E	3	NO	NO	3	-	-	1	-	-	0	-	-	
LM7E	4	SI	SI	0	3265	0	0	1131	0,000	0	-	-	
LM7E	5	SI	SI	0	6554	0	0	64	0,000	0	-	-	
T	Tasa de colisión aves > 60cm		0	9819	0,000	1	0	0,000	0	0	0		

	DTBird		1º cuatrimestre		2º cuatrimestre			3º cuatrimestre				
PE	WTG	DETECCIÓN	DISUASIÓN	Total, colisiones	Total, vuelos	Ratio	Total, colisiones	Total, vuelos	Ratio	Total, colisiones	Total, vuelos	Ratio
(€	(en aerogeneradores equipados)											

Tabla 38. Mortandad de aves > 60 cm, en aerogeneradores con sistemas anticolisión. (WTG = aerogenerador). Fuente: DtBird.

La ratio se calcula dividiendo el nº de colisiones entre el total de vuelos, para cada WTG. Ahí donde el número de vuelos es bajo y un valor de colisiones alto, indica que se ha obtenido una eficacia de disuasión menor.

Como se ha explicado anteriormente, el sistema de marcaje de palas, es un sistema de disuasión de aves instalado en las palas de los aerogeneradores. Se trata del pintado de las puntas de las palas en color rojo, que contrasta con el color blanco que tienen el resto de las palas del aerogenerador. Solo han sido colocados en aquellas posiciones más críticas, en los que se prevén pasos más frecuentes de aves y donde se ha detectado mayor movimiento aéreo en los vuelos registrados durante los seguimientos de avifauna.

Para valorar la eficacia de estos sistemas, no es representativo comparar de forma directa los valores de mortandad entre aerogeneradores. Es por ello que se calcula la incidencia de cada uno, y analiza a nivel individual y a nivel global entre los que disponen del marcaje y de los que no.

A continuación, se muestran los valores de la incidencia de la siniestralidad sobre los aerogeneradores, discriminando los que tienen pintado de palas, como los que no.

		Marcaje de pala	INCID	ENCIA	
PE	NO	Punta roja	TOTAL	NO	SI
LM7E 01	2	0	2	0,67	0,00
LM7E 03	0	2	2	0,00	0,40
LM7E 04	1	0	1	0,33	0,00
Total	3	2	5	1,00	0,40
Ratio	1,00	1,00	1,00		

Tabla 39. Incidencia de colisiones de aves por aerogeneradores con pintado de palas y sin ellos.

Durante este cuatrimestre se han dado 3 colisiones en aerogeneradores sin pintado de palas y 2 impactos en un aerogenerador con la punta roja.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

3.9.5. MEJORAS EN SISTEMAS DTBIRD

DTBird es un sistema que consta de distintos módulos, modelos y protocolos operacionales. Los módulos instalados y operacionales son el de Detección V4, y Disuasión D10 con dos anillos de altavoces instalados en la torre del aerogenerador.

DTBird dispone de Módulos de detección V8 con mayor detectabilidad y distancia de detección 60% mayor y módulo de parada automática para vuelos individuales y/o en función de la actividad de las aves.

En la tabla adjunta se incluye el listado de proyectos de I+D a desarrollar por DTBird en colaboración con el PE Las Majas-Romerales. Señalar que dicha propuesta no posee carácter contractual, pudiendo ser modificada según varíen los intereses de DTBird, el cliente o ambos.

	Plan de I+D+i PE Las Majas-Romerales									
Propuesta	Instalación de la nueva versión del software de DTBird	Evaluación de la capacidad de detección del nuevo software de DTBird sobre imagen	Evaluación y desarrollo de mejoras del software de DTBird	Evaluación de la eficacia del módulo de disuasión según número y localización de altavoces	Evaluación de la eficacia del módulo de disuasión según el sonido	Evaluación de las colisiones registradas				
Objetivos	1. Incrementar el área de detección a la zona de palas // 2. Facilitar la integración de mejoras y nuevas prestaciones.	1. Evaluar la capacidad de detección del software frente al visionado de videos brutos por un técnico	1. Evaluar eficacia de los algoritmos actuales para reducir falsos positivos // 2. Evaluar eficacia ante diferentes condiciones ambientales	1. Evaluar la eficacia del sonido emitido por el módulo de disuasión DTBird para desviar a las aves en vuelo y evitar el cruce de rotor// 2. Evaluación de la eficacia del módulo de disuasión según el número y distribución en altura de los altavoces.	1. Evaluar la eficacia de los nuevos sonidos del módulo de disuasión de DTBird.	1. Analizar las circunstancias de las colisiones registradas en la plataforma DTBird // 2. Estudio de mejoras a implementar o desarrollar para prevenir nuevas colisiones en circunstancias similares.				
Requisitos	Instalación del nuevo software de DTBird. Se solicitará permiso previo.	Grabación de video bruto y en continuo.	Instalación previa del nuevo software. Avance condicionado por la ocurrencia de los fenómenos a evaluar.	Instalación de un módulo de disuasión adicional en nacelle.	Sistema DTBird existente	Búsqueda previa de eventos de colisión en la plataforma DTBird				
Estado enero 2022	En fase de ejecución	Pendiente cumplimiento requerimientos	Pendiente cumplimiento requerimientos	En fase de planificación. Pendiente cumplimiento requerimientos	En fase de planificación	En fase de planificación				

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

	Finalizado	En giognojón	En ojogución	Sin cambios	Sin cambios	Sin cambios
Actualización marzo 2022	riilauzau0	En ejecución	En ejecución	SIII CAITIDIOS	SIII CAITIDIOS	SIII CAITIDIOS
Actualización mayo 2022	Finalizado	En ejecución: completada la fase de diseño experimental y la de grabación de vídeos en bruto. En curso las fase de recogida de datos 1) por parte de los analistas de vídeos y 2) procesamiento de las imágenes. En espera, la fase de análisis de los datos recopilados (prevista para junio 2022)	En ejecución: completada la fase de diseño experimental y el desarrollo de un laboratorio virtual para el análisis de los vídeos. En curso, el desarrollo de la plataforma para la recogida de datos. En espera, la recogida de datos por parte de los analistas de videos (prevista para junio 2022).	Sin cambios	Sin cambios	Sin cambios
Actualización septiembre 2022	Finalizado	En ejecución: completada la fase de diseño experimental y la de grabación de vídeos en bruto. En curso las fase de recogida de datos 1) por parte de los analistas de vídeos; 2) procesamiento de las imágenes y 3) análisis de los datos recopilados	En ejecución: completada la fase de diseño experimental y el desarrollo de un laboratorio virtual para el análisis de los vídeos. En curso, 1) el desarrollo de la plataforma para la recogida de datos y 2) recogida de datos por parte de los analistas de videos	Sin cambios	En fase de ejecución	Sin cambios
Actualización enero 2023	Finalizado	En ejecución: completada la fase de diseño experimental y la de grabación de vídeos en bruto. En curso las fase de recogida de datos 1) por parte de los analistas de vídeos; 2) procesamiento de las imágenes y 3) análisis de los datos recopilados	En ejecución: completada la fase de diseño experimental y el desarrollo de un laboratorio virtual para el análisis de los vídeos. En curso, 1) el desarrollo de la plataforma para la recogida de datos y 2) recogida de datos por parte de los analistas de videos	Sin cambios	En ejecución. Proceso de redacción del primer informe	Sin cambios

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Actualización abril 2023	Finalizado	Finalizada: primera fase de recogida de datos, analizadas, procesadas las imágenes y primeros resultados del F-score. Ampliación a una segunda fase de recogida de datos en primavera En ejecución: completada la fase de diseño experimental y la de grabación de vídeos en bruto. En curso las fase de recogida de datos 1) por parte de los analistas de vídeos; 2) procesamiento de las imágenes y 3) análisis de los datos recopilados	En ejecución: completada la fase de diseño experimental y el desarrollo de un laboratorio virtual para el análisis de los vídeos. En curso, 1) el desarrollo de la plataforma para la recogida de datos y 2) recogida de datos por parte de los analistas de videos	Sin cambios	En ejecución. Mandado el primer informe. Proceso de redacción del segundo informe	Sin cambios
Actualización septiembre 2023	Finalizado	En ejecución: cálculo el f-score después de añadir mejoras en los algoritmos	En ejecución: completada la fase de diseño experimental y el desarrollo de un laboratorio virtual para el análisis de los vídeos. En curso, 1) el desarrollo de la plataforma para la recogida de datos y 2) recogida de datos por parte de los analistas de videos	Sin cambios	En ejecución. Mandado el segundo informe. El 4 de septiembre se completó la recogida de información del experimento (1 año). En fase análisis que hace necesario la revisión de vuelos. Analizados vuelos hasta marzo.	Sin cambios
Actualización enero 2024	Finalizado	En ejecución: cálculo el f-score después de añadir mejoras en los algoritmos	En ejecución: Realizando mejoras para eliminar FP de insectos	Sin cambios	En ejecución: En fase de análisis de los datos. Prevista entrega de informe final en verano 2024	Sin cambios

Actualización mayo 2024	Finalizado	Finalizada	En ejecución: 2º iteración para reducir los FPs por insectos y aviones	Sin cambios	En ejecución: En fase de análisis de los datos. Prevista entrega de informe verano/otoño 2024	Sin datos suficientes
Actualización septiembre 2024	Finalizado	Finalizada	En ejecución: terminado filtro de avión e insectos. Pendiente vuelo de dron en sistema gemelo para especificaciones del sistema. Testando algoritmos de reconocimiento de tamaños de aves	En pausa hasta tener resultado de testeo de eficación en sistema gemelo	En ejecución: Finalizado análisis	Sin datos suficientes

Tabla 40. Proyectos a desarrollar por DtBird.

La presente propuesta incluye el proyecto "Instalación de la nueva versión del software de DTBird" que se encuentra en fase de ejecución en un nuevo módulo de detección DTbirdV4. Tras finalizar este proyecto, se prevé la ejecución de otros dos destinados a la evaluación y mejora de las capacidades del nuevo software: "Evaluación de la capacidad de detección del nuevo software de DTBird sobre imágenes" para determinar la capacidad de detección del nuevo software frente a un analista de vuelos y "Evaluación y desarrollo de mejoras del software de DTBird" para mejorar la eficacia del software ante distintos eventos y condiciones ambientales, y disminuir el número de falsos positivos del sistema.

Con el objetivo de poder realizar un análisis comparativo entre el software hasta hora implantado y el proyecto Larus, de forma proactiva, se han instalado ya una prueba piloto del proyecto Larus, que incluye cámaras en 4G, y una mejora del software que facilitará el tratamiento de datos. La instalación se ha realizado en un aerogenerador de otro parque perteneciente al mismo promotor que se sitúa en la misma provincia. Este aerogenerador en una zona con un número alto de vuelos y en una posición representativa por mortalidad, resulta idóneo para contrastar ambas versiones. Va a facilitar una comparativa en la eficacia de detección de ambos sistemas. Además, cuenta con un año desde su instalación, lo que va a permitir un estudio análisis de eficacia de los sistemas de DtBird, con un estudio de mortandad anterior y posterior.

Fotografía 20. Nuevo sistema W4-D10, instalado.

 Se encuentra en fase de planificación el proyecto "Evaluación de las colisiones registradas" en el que se pretende evaluar las circunstancias de las colisiones registradas en el parque durante el 2022, con el objetivo de desarrollar mejoras para evitar colisiones de características similares en el futuro.

A raíz de la observación de los vuelos en la plataforma de DtBird, se han identificado puntos de mejora. Uno de ellos es el proyecto Larus, que consiste en el desarrollo de una nueva plataforma que mejora la detectabilidad y el control operacional. La implementación de esta nueva herramienta, darán lugar a nuevas capacidades, y que se pretende incluir en los próximos meses.

El trabajo de visionado de vídeos y búsqueda de colisiones, realizado de forma conjunta entre ambos equipos coordinada con el equipo de DtBird, permite identificar dichos puntos de mejora. El intercambio de datos, como la tabla de mortandad y de las observaciones en campo, y las reuniones por videoconferencia, han permitido alcanzar un objetivo común: un uso más amplio de la herramienta, una búsqueda de colisiones más eficiente y un mejor conocimiento del comportamiento de las aves.

 Otras de las mejoras a implantar, son las carcasas y soportes de las cámaras de vídeo de los sistemas de detección. A diferencia de las actuales, estas no cubren el objetivo, ya que las

lentes son susceptibles de ensuciarse y dañarse o generar reflejos con el sol. Al quedar semi expuesto a la intemperie, la lente del objetivo posee un cristal deslizante e impermeable.

Los cubre lentes de cristal se incluirán con el nuevo software funcionando ya que están adaptados para el formato de imagen que toma el nuevo software. El objetivo es reducir reflejos del sol y posibilitar la limpieza de los mismos sin necesidad de reemplazo/uso de maquinaria de trabajo en altura, por lo que el coste será menor y se podrán limpiar con mayor frecuencia que la del protocolo de cambio anual actual. Se adjuntan imágenes del cambio de cubre lentes, por fuera los cubre lentes de plástico y cristal son muy similares.

Fotografía 21. Nuevas carcasas para las cámaras de detección de DtBird.

Fotografía 22. Cubrelente acoplado a la nueva cámara.

• Se propone el posicionamiento de los altavoces lo más altos posible, ya que la presión sonora (dB) se reduce a la mitad cuando la distancia se duplica. Por tanto, para vuelos de altura como los realizados por planeadores de gran envergadura como el buitre leonado, recomendamos aumentar la altura de los altavoces todo lo posible, esto es, hasta la nacelle. El *Colision Avoidance Module* estaría formado en este caso por los dos anillos de altavoces habituales en torre, y cuatro altavoces en la nacelle orientados hacia las palas. Así, los sonidos emitidos por el módulo serán percibidos a mayor volumen por las aves que vuelan en altura y en trayectoria sobre el rotor, sin detrimento en la protección de las áreas que actualmente cubren los dos anillos de la torre.

Fotografía 1. Sistema de anclaje de los altavoces.

El principal objetivo del proyecto es aumentar la detección de aves: aumentado la distancia máxima de detección, mejorar la corrección de la luz para evitar el deslumbramiento de las cámaras y mejorar la detección entre palas. Además de obtener los datos en una plataforma que permita personalización de la estética de los videos y obtención de datos para el desarrollo de prestaciones basadas en IA.

Este trabajo de i + d que está desarrollando DtBird, permitirá una eficacia mayor en la disuasión de aves y en la detección de los mismos en caso de una colisión. La mejora de la calidad de las imágenes y la posibilidad de comparativa con los sistemas anteriores en una posición similar, capacitará a los aerogeneradores de un sistema propio más eficiente de control y disuasión de las colisiones, de forma individual. El proyecto actualmente se encuentra ya diseñado y programado, en fase de desarrollo final. Durante este año se completará la parametrización y que se espera disponer de datos para el análisis en el próximo cuatrimestral.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

3.10. PLAN DE MEDIDAS ADICIONALES ANTICOLISIÓN

3.10.1. REDUCCIÓN RASTROJOS DE LARGA DURACIÓN ENTORNO A LOS AEROGENERADORES

Durante el 2022 se consideró la posible relación entre las zonas de cría de los aláudidos con las colisiones en determinados aerogeneradores (WTG) y proponer medidas. Como son aves que nidifican en el suelo, la afluencia y cercanía de alguna de esas zonas a varias posiciones de WTG. Durante el invierno se revisó aquellas zonas donde se dieran las caracterízalas de hábitat de cría para las distintas especies durante periodos prolongados, principalmente en rastrojeras. Se denominó así rastrojeras de larga duración: vegetación herbácea espontánea con colonización de especies naturales.

Muchas de las especies detectadas en la revisión que sufren colisión corresponden a aquellas que permanecen en el territorio durante todo el año particularmente de los aláudidos. Este grupo de aves, formado por la Calandria (*Melanocorypha calandra*), Alondra común (*Alauda arvensis*), Cogujada montesina (*Galerida theklae*) y la Terrera común (*Calandrella brachydactyla*), a las que habría que añadir aves de otros grupos como el Escribano triguero (*Emberiza calandra*) y la Bisbita campestre (*Anthus campestris*). Estas especies habitan en terrenos eminentemente agrícolas de cultivos herbáceos, en cereales, leguminosas y en barbecho; en terrenos llanos con vegetación leñosa. Todas ellas nidifican en el suelo, con preferencias distintas sobre el tipo de vegetación.

- Alondra común (Alauda arvensis): Medios desarbolados y abiertos, en áreas cultivadas, barbechos, matorrales y pastizales.
- <u>Calandria común (Melanocorypha calandra)</u>: Terrenos esteparios, con preferencia por llanuras con cultivos de cereal y herbazal.
- <u>Cogujada montesina (Galerida theklae)</u>: Estepas arbustivas, pastizales, terrenos secos, monte bajo. Evita las áreas ocupadas por cultivos.
- <u>Terrera común (*Calandrella brachydactyla*)</u>: Tierras desnudas y cultivo de cereal de secano en barbecho, y pastizales.
- <u>Escribano triguero (Emberiza calandra)</u>: Terreno estepario, al abrigo de un arbusto.
- <u>Bisbita campestre (Anthus pratensis)</u>: Terrenos esteparios, al abrigo de un arbusto o piedra.

Fotografía 23. Nido de aláudido encontrado durante la prospección de siniestralidad.

Debido a las preferencias de nidificación sobre el tipo de vegetación, y la proximidad de algunas de estas zonas a los aerogeneradores, desde la Comisión de Seguimiento se propuso el estudio del efecto que pueda producir este hecho sobre la población de estas especies y la posibilidad de tomar como medida el labrado de las mismas para evitar colisiones.

Las zonas estudiadas, localizadas como hábitat idóneo para la nidificación de aláudidos, fueron las siguientes:

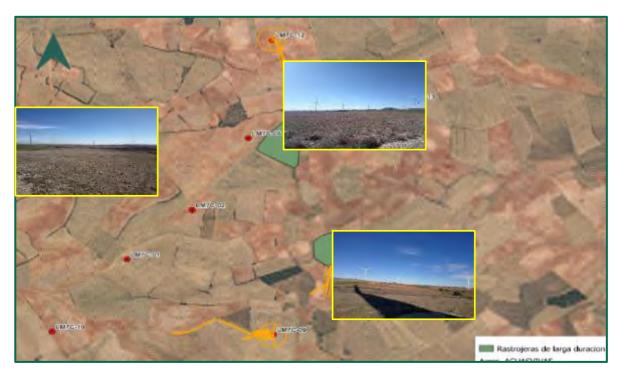


Figura 62. Áreas de cultivo abandonadas; en otro parque eólico del mismo clúster.

Figura 63. Áreas de cultivo abandonadas; en otro parque eólico del mismo clúster.

Las áreas que se han localizado en este parque son muy pequeñas por lo que esta medida se planteará aplicar cuando el abandonado la actividad agrícola presente condiciones para la nidificación. Un año después, se comprobó que no existía una relación consistente de estas posibles áreas de reproducción con las colisiones registradas en los WTG más cercanos. Actualmente muchas de estas zonas ya se han labrado perdiendo así las características para la reproducción de esas aves. A lo largo de los próximos años se tendrá en cuenta y se seguirá estudiando en nuevas áreas, haciendo seguimiento de nidificaciones halladas.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

4. RED HÍDRICA Y SEGUIMIENTO DE PROCESOS EROSIVOS

Se denominan así a todos los procesos de destrucción de las rocas y arrastre del suelo, realizados por agentes naturales. La degradación del suelo puede ser muy intensa como consecuencia de las características climáticas, acompañadas de una acción humana intensiva, bien por la ganadería, bien por roturaciones y talas.

Tras las visitas realizadas con el fin de evaluar los distintos puntos contemplados en el inventario del seguimiento ambiental, durante el cuatrimestre anterior se pudo constatar que algunas de las cunetas habían quedado colmatadas por el arrastre de elementos gruesos de los taludes y pistas. Pero la mayoría habían tenido un correcto funcionamiento de las cunetas de drenaje destinadas a mitigar el riesgo de erosión en los viales de acceso de acceso a la subestación y hacia los aerogeneradores del parque.

El periodo fuerte de lluvias primaveral se produjo un deterioro en afección al terreno, debido a la escorrentía de las lluvias. Tras conocer los daños, los gestores del parque eólico, llevaron a cabo un plan de restauración sobre todas las zonas afectadas. A lo largo de otoño y el invierno, se ha comprobado que han funcionado correctamente.

Fotografía 24. Limpieza de las cunetas.

Fotografía 25. Limpieza de las cunetas. (Antes)

Fotografía 26. Tramo de cuneta hormigonado. (Después)

Fotografía 27. Fibra de coco y malla metálica en talud. (Después)

Fotografía 28. Talud en proceso de restauración y protección.

Fotografía 29. Talud cubierto con malla metálica y fibra de coco.

A lo largo de este cuatrimestre, se han observado un correcto funcionamiento de las medidas aplicadas. No obstante, se seguirá revisando de cara a futuros eventos de precipitación.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

5. APLICACIÓN DE MEDIDAS COMPLEMENTARIAS

Dentro del análisis efectuado para el impacto sobre la avifauna de los proyectos al clúster Aguasvivas, se establecen tres líneas principales como son: afección a grandes rapaces, efecto barrera de las infraestructuras y mortandad por colisiones. De los resultados y tratamiento de estos tres impactos, en el documento se definen una serie de medidas complementarias y, en concreto, "Acciones de apoyo al Plan de Recuperación del Águila Perdicera en Aragón y en particular al programa de marcaje de animales mediante tecnología Satélite y a acciones de mejora de hábitats de alimentación".

Las distintas resoluciones por las que formulan las Declaraciones de Impacto Ambiental de los proyectos asociados al clúster Aguasvivas, incluyen para todas ellas el siguiente condicionado:

"Las medidas complementarias planteadas en el estudio de avifauna y estudio de impactos acumulativos y sinérgicos que prevén acciones para el conjunto del complejo Las Majas de apoyo al Plan de Recuperación del Águila Perdicera en Aragón, programas de marcaje de animales mediante tecnología Satélite y acciones de mejora de hábitats de alimentación, o la aplicación de planes de gestión con acciones de apoyo a la conservación de alondra ricotí o cernícalo primilla, se ampliarán con la adopción de otras medidas enfocadas directamente a la recuperación de hábitats y número de individuos que podrán verse afectados por el conjunto de las instalaciones en relación con el complejo eólico Las Majas.

Todas las medidas complementarias deberán ser coordinadas y validadas por el Servicio de Biodiversidad del Departamento de Agricultura, Ganadería y Medio Ambiente, se programarán antes del inicio de la actividad debiendo implementarse en el periodo de tres años tras el comienzo de las obras y se prolongarán durante toda la vida útil del parque eólico".

En coherencia con las medidas definidas en el estudio de impacto ambiental, estudio de sinergias y declaraciones de impacto ambiental, se considera el águila perdicera (*Hieraaetus fasciatus*) como especie idónea para el desarrollo del Plan que irá encaminado a la recuperación de la especie.

A continuación, se muestran los distintos factores que se han tenido en cuenta para la elección del águila perdicera como especie diana:

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

- Especie identificada con afección directa por parte de los proyectos, cuyo impacto ha sido identificado y evaluado para el establecimiento de medidas de minimización del mismo.
- Se pretende centrar esfuerzos en una especie paraguas, cuya recuperación repercutirá positivamente en la restitución del ecosistema.
- Grado de amenaza y declive poblacional en Aragón que implica una preocupación por la supervivencia de esta especie en la comarca.

Durante el año 2021 se llevaron a cabo distintas reuniones con el Servicio de Biodiversidad del Departamento de Agricultura, Ganadería y Medio Ambiente de Aragón para definir y diseñar el Plan de Medidas Complementarias del clúster Aguasvivas.

Para el planeamiento y diseño de la propuesta, se contó con el criterio técnico del Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), dada su extensa experiencia y conocimiento de la especie y medidas planteadas.

5.1. PLAN DE MEDIDAS COMPLEMENTARIAS

El Plan se estructura en una medida troncal que se enmarca en el Plan de Recuperación del Águila Perdicera en Aragón y que consiste en la instalación de una jaula-hacking para la introducción, cría, monitoreo y posterior seguimiento satelital de ejemplares de águila azor perdicera (*Hieraaetus fasciatus*) durante seis años de forma que, una vez liberados, contribuyan a la recuperación de la especie a nivel global y permitan la recuperación de territorios y zonas de nidificación.

Dentro de los objetivos específicos de la medida se definen los siguientes:

- 1. Recuperar poblaciones extintas y afianzar las existentes a través de la liberación de ejemplares, aumentando el número potencial de parejas territoriales en zonas de presencia histórica.
- 2. Fomentar el factor local en la localización planteada en relación con el turismo ornitológico.
- 3. Aumentar el respeto de la sociedad hacia el águila perdicera en particular, y las rapaces en general.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

4. Garantizar y reforzar la continuidad con las experiencias de liberación de poblaciones más norteñas de águila perdicera, favoreciendo la conectividad de hábitats y buscando una mayor eficacia de los resultados.

5. Disminuir el riesgo de que las águilas y otras aves mueran electrocutadas en su área de distribución natural.

6. Dar continuidad al trabajo de colaboración en red entre distintas administraciones y entidades locales dentro de la conservación de la especie.

7. Incrementar la información y análisis de las zonas de asentamiento y dispersión de juveniles, así como de los factores de riesgo y principales amenazas.

Durante todo el proceso temporal de implantación y desarrollo del Plan, se mantendrá una comunicación y coordinación activa con todos los agentes y administraciones implicados en el proyecto, de forma que se permita y garantice un adecuado control e información del estado y resultados obtenidos en cada fase.

En base a esto, a propuesta del Servicio de Biodiversidad del Departamento de Agricultura, Ganadería y Medio Ambiente de Aragón, y en base a la experiencia adquirida por parte de este servicio y de los criterios técnicos aportados por GREFA, se propone la localización de la medida (jaula-hacking) en el entorno del Parque Natural de Sierra y Cañones de Guara.

El presente Plan de Medidas Complementarias se plantea con un horizonte temporal inicial de 5 años con inicio en el último trimestre del año 2021. Este horizonte podrá ser ligeramente modificado en función de las circunstancias y resultados obtenidos en las evaluaciones e informes anuales. En cualquier caso, y de acuerdo con lo definido en el condicionado de las declaraciones de impacto ambiental de los proyectos, el control y seguimiento sobre la eficacia de la medida se mantendrá durante toda la vida útil de los mismos. La construcción de la jaula se realizó durante el último trimestre de 2021.

La implantación temporal de la medida queda principalmente condicionada por la disponibilidad de los pollos y por el ciclo biológico de la cría de estos que permita su introducción en el proceso de hacking de forma adecuada.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

De forma coordinada con el Servicio de Biodiversidad y GREFA, se determina la fecha óptima para la introducción de los primeros ejemplares en el proceso de hacking. Para la introducción y cría de las águilas son necesarios tres meses, que deberán transcurrir durante la primavera. Gracias a un geolocalizador que portan en sus espaldas, los ejemplares son monitorizados mediante sistemas de GPS. De esta forma, se conocerá todos sus desplazamientos y constantes vitales permitirá determinar el tipo de actividad y estado reproductivo.

El "Plan de Medidas Complementarias Clúster Aguasvivas. Plan de Recuperación Águila Perdicera. Agosto 2021" ha sido revisado y dado su conformidad por el Servicio de Biodiversidad del Departamento de Agricultura, Ganadería y Medio Ambiente del Gobierno de Aragón, a fecha 29 de septiembre de 2021.

Durante el primer año del inicio del proyecto de reintroducción 5 ejemplares de águila Bonelli mediante jaula Hacking, se obtuvo una supervivencia de dos ejemplares, los cuales uno de ellos ocupó en territorio de liberación. Los otros tres no supervivientes, debieron su muerte a causas de depredación y por factores antrópicos (tendido eléctrico).

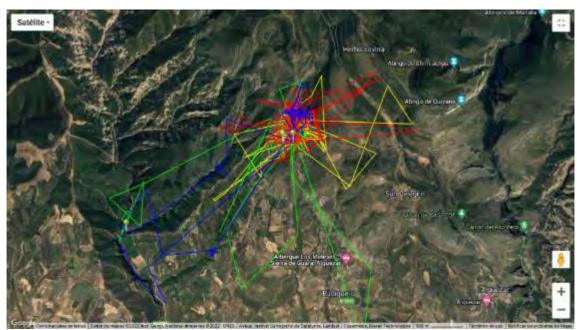


Figura 64. Dispersión de los ejemplares liberados en 2022 durante los primeros días.

Durante el segundo año, a principios de mayo de 2023, en continuación con el Plan de Recuperación Águila Perdicera en Guara, se procedió a la introducción de 7 pollos en la jaula, esta vez, cuatro de los pollos procedentes del Centro de Recuperación de fauna que dirige Grefa; tres machos y una hembra.

Otros provenientes de Andalucía y uno de un centro de cría en cautividad de Francia. Posteriormente se introdujeron tres pollos más. Siete de ellas mediante Jaula Hacking en Huesca. Una vez superado el proceso de cría, los ejemplares fueron liberados el 3 de julio. El 27 de noviembre, se liberó una hembra, cedida por la Junta de Andalucía, en el valle del Ebro en Zaragoza, para evitar posibles competencias con la otra hembra liberada. En total fueron 8 ejemplares liberados.

Fotografía 2. Pollos de águila de bonelli en la jaula hacking. 2023

Tras la liberación e inicio de la alimentación suplementaria, se ha observado una pronta adaptación de los ejemplares en el territorio sin producirse aún la dispersión de estos, los cuales hicieron uso de la alimentación suplementaria durante varias semanas.

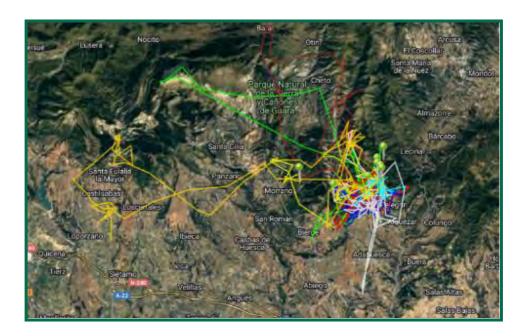


Figura 65. Dispersión de los ejemplares liberados en 2023 durante los primeros días; y de "Alquezar", macho liberado en 2022.

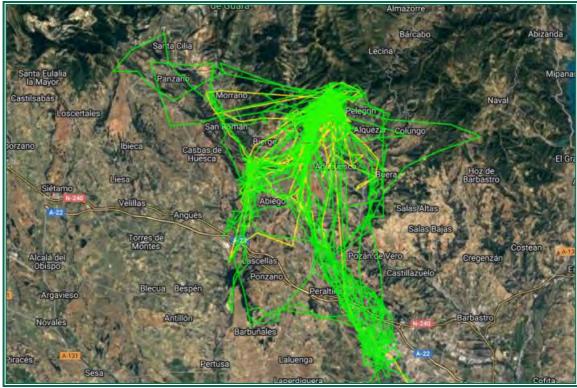


Figura 66. Bética en amarillo y Alquézar en verde durante los primeros meses

Durante varios meses "Alquézar" y "Bética" se comportaron como una pareja, pero finalmente se produjo la dispersión de "Bética", lo que es normal para esta especie. Se espera que en los próximos meses retorne y se pueda afianzar esta pareja. De los ocho ejemplares liberados han muerto dos (ahogamiento en canal y electrocución), desaparecido uno (desconocemos si es fallo del emisor) y continúan vivos cinco. Un total son siete los ejemplares que continúan vivos a finales de 2023 de los 12 liberados en Aragón mediante jaula-hacking, siendo dos de ellos liberados en 2022.

Estos resultados de mortalidad son habituales para la especie y para proyectos de esta tipología. Las causas de muerte fueron colisión con una línea de transporte de energía (Aragón), depredación por parte de águila real (Aragón) y desconocida (Castilla y León).

Los dos individuos que siguen vivos nacidos en 2022 son dos machos, uno de ellos "Alquézar", regenta el territorio de la zona de liberación haciendo incursiones a zonas de dispersión. Sin embargo, "Aragón" se encuentra en la zona de dispersión juvenil situada en Cádiz. Ha retornado en varias ocasiones a Aragón, pero siempre volviendo a Cádiz. Es natural que los jóvenes hasta el tercer cuarto año de calendario se asienten en estas zonas.

A finales del año, dos parecen estar asentados en la zona de liberación y otros tres permanecen cerca.

Fotografía 3. En verde recorridos de "Aragón", en amarillo recorridos de "Alquézar" durante el segundo año de su liberación.

Fotografía 4. Localización de los ejemplares vivos a finales de 2023.

A principios de año, fue capturada una hembra adulta cerca de la zona, para iniciar seguimiento de monitorización, con el objetivo de conocer las posibles interacciones con lo ejemplares liberados del proyecto y su estado de reproducción. Se supo posteriormente que murió por envenenamiento.

En el tercer año, entre el 25 de julio y el 15 de agosto se liberaron 11 ejemplares siendo la mayoría hembras. Una de las hembra "Cunarda", perdió la señal en un lugar inaccesible de los Pirineos franceses, por lo que se cree que ha podido ser depredado. Desde su liberación interactuaron con "Alquezar" (liberado en 2022) y con posterioridad otras zonas lejos de la zona de liberación. Desde su liberación, algunos ejemplares empezaron los primeros vuelos dispersivos, cuatro de ellos permanecieron todavía en la zona. Los dos ejemplares de la primera liberación siguen dado señal en las mismas ubicaciones: Cádiz y Huesca, siendo "Alquezar" el macho que parece haberse asentado en la zona de liberación junto con "Chimiachas" (liberado en 2024). El resto de los ejemplares liberados están en dispersión en distintos puntos de la Península Ibérica y uno por Francia, aunque se espera que regresen al lugar de liberación tras la dispersión, mayoritariamente de los machos.

Fotografía 5. Localización de los ejemplares vivos a finales de 2024.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

6. CALIDAD ACÚSTICA

En las Declaraciones de Impacto Ambiental se contempla le realización de campañas de medición de ruido:

"Durante toda la fase de explotación del parque eólico, se deberán cumplir los objetivos de calidad acústica, según se determina en el Real Decreto 1367/2007, de 19 de octubre, por el que se desarrolla la Ley 37/2003, de 17 de noviembre, del Ruido y en la 7/2010, de 18 de noviembre, de protección contra la contaminación acústica de Aragón. Además, en la fase de explotación se realizará un exhaustivo seguimiento de los valores de medición en el núcleo de Herrera de los Navarros para no superar los límites máximos admisibles que dicta dicha normativa. En su caso, se tomarán las medidas oportunas para evitar superar dichos valores que incluirán la parada de aerogeneradores o su reubicación."

"Verificación periódica de los niveles de ruido producidos por el aerogenerador y del cumplimiento de los objetivos de calidad acústica establecidos en la normativa sectorial citada anteriormente; para ello, se ejecutarán las campañas de medición de ruido previstas en el estudio de impacto ambiental."

6.1. METODOLOGÍA

El criterio seguido para establecer la presente metodología en la elaboración de este informe se ha basado en la revisión y análisis de la bibliografía disponible, así como de las metodologías utilizadas en otros parques eólicos analizados.

Se ha realizado un estudio acústico de los parques eólicos siguiendo la siguiente metodología:

Se han seleccionado una serie de puntos en el interior de los propios parques, así como en su área de influencia, determinada por el cálculo teórico del impacto acústico, en los que se han realizado mediciones mediante un sonómetro homologado que registra, al menos, los siguientes parámetros:

- LAT: el nivel de presión sonora continua equivalente con tiempo de integración 5 s, con ponderación A.
- L90: el nivel de presión sonora más frecuente durante el 90% del tiempo que dura la medición.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

- LAE: el Nivel de Exposición Sonora (SEL), aquel nivel constante que para una duración de un segundo tiene la misma cantidad de energía acústica que el suceso de ruido dado, con ponderación A. Se trata de un índice útil para calcular los niveles sonoros que resultan de cualquier combinación de fuentes sonoras.
- LAeq: es el nivel de presión sonora equivalente ponderado A, en decibelios, determinando sobre un intervalo temporal de *t* segundos.

Respecto a la velocidad del viento más adecuada, a la hora de llevar a cabo las medidas, ha de tenerse en cuenta que estas deben ser tomadas en las condiciones de funcionamiento de los aerogeneradores, es decir, a velocidades de viento superiores a 4 m/s.

Por otro lado, aunque los aerogeneradores operan generalmente hasta velocidades de 25 m/s, se considera que no es necesario caracterizar el ruido de fondo a velocidades superiores a 12 m/s por varios motivos:

- Por encima de los 12 m/s, es difícil de conseguir que las medidas no se vean distorsionadas por el propio viento.
- Por la misma razón, las velocidades de viento de referencia normalizadas, en función de las cuales se expresa la potencia acústica asociada a los aerogeneradores, no superan los 10 m/s.
- Generalmente, la probabilidad de que se den vientos superiores a 12 m/s no es muy elevada, lo
 que a su vez conlleva una dificultad para que estos eventos puedan ser medidos, durante las
 campañas de muestreo.
- Finalmente, está comprobado que el incremento del ruido de fondo en función de la velocidad del viento es superior al que se produce en los aerogeneradores. Debido a esto, se considera que, el estudio del impacto acústico producido por la implantación de un parque eólico, debe desarrollarse en torno a velocidades de viento moderadas, ya que, a partir de ciertos valores, el ruido de fondo puede llegar a enmascarar el producido en el propio parque.

Por todo ello, a la hora de llevar a cabo el estudio, deben tomarse una serie de medidas que garanticen la validez del muestreo, a velocidades comprendidas, al menos, entre los 4-12 m/s. para lo cual se proponen las siguientes:

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

- Medir en el exterior, en la medida de lo posible en un lugar resguardado del viento, a una distancia de al menos 5 m de cualquier superficie reflectante, en dirección al parque eólico.
- Situar el sonómetro a 1,2 metros de altura sobre el suelo y protegido con una pantalla antiviento.
- Realizar las medidas con el sonómetro en respuesta lenta, utilizando como parámetro descriptor el LA90, siempre teniendo en cuenta que los resultados obtenidos pueden ser entre 1,5-2,5 dB(A) menores que el LAeq ((nivel de ruido continuo equivalente, representa la exposición total a ruido durante el período de interés) medido para el mismo periodo.
- Durante el muestreo, debe ser conocida la velocidad del viento, con la finalidad de desestimar aquellos datos que puedan haberse visto alterados ante episodios de fuertes vientos.

Debe comprobarse que las condiciones de viento (dirección y velocidad) en la que han sido llevadas a cabo las mediciones, son representativas de aquellas, bajo las cuales, opera el parque eólico la mayor parte del tiempo.

Respecto al equipo utilizado, el sonómetro propuesto para realizar las mediciones es un sonómetro de la marca CESVA, modelo SC310 calibrado en el momento de tomar las mediciones, cuyas especificaciones técnicas, facilitadas por el fabricante, son las siguientes:

- Medición de aislamientos acústicos por tercio de octava
- Evaluación de ruido medioambiental; tonalidad, impulsividad y baja frecuencia
- Análisis frecuencial de ruido industrial y medioambiental
- Detección e identificación de fuentes de ruido

El SC310 tiene una sola escala, no necesita ningún ajuste previo a la medición, y mide simultáneamente todas las funciones disponibles.

Cumple con las siguientes normas:

• EN 61672 clase 1, EN 60651:94 (A1:94) (A2:01) clase 1. EN 60804:00 tipo 1, EN 61260:95 (A1:01) clase1

- IEC 61672 clase 1, IEC 60651:01 clase 1, IEC 60804 tipo 1, IEC 61260:95 (A1:01) clase 1
- ANSI S1.4:83 (A1:01) tipo 1, ANSI S1.43:97 (A2:02) tipo 1, ANSI S1.11:04
- Marca € . Cumple la directiva de baja tensión 73/23/CEE y la directiva CEM 89/336/CEE modificada por 93/68/CEE.

RANGO DE MEDIDA

LF, LS, LI, LT y Lt

Límites del indicador: 0 - 157 dB

	<u>(</u>	C-130 + PA-1	<u>3</u>	<u>(</u>	<u>C-250 + PA-14</u>		
Margen primario	Α	С	Z	Α	С	Z	
Límite superior	120	120	120	120	120	120	
Límite inferior	30	32	38	28	29	34	
Margen de medición							
Límite superior	137	137	137	137	137	137	
Factor de cresta 3:	130	130	130	130	130	130	
Factor de cresta 5:	126	126	126	126	126	126	
Factor de cresta 10:	120	120	120	120	120	120	
Límite inferior:	24	26	31	22	22	27	

L_{peak}

Límites del indicador: 0 - 160 dB

DETECTOR DE PICO Ipeak

Tiempo de subida < 75 μ S

RUIDO ELECTRICO								
		C-130 + PA-13		<u>C-250 + PA 14</u>				
Ruido eléctrico	Α	С	Z	Α	С	Z		
Máximo	14,4	16,8	21,9	9,4	10,5	18,5		
Típico	13,4	15,8	20,0	8,6	8,8	16,3		
Ruido total (eléctr	ico + térmico	micrófono)						
Máximo	19,6	21,1	25,9	16,6	16,8	22,0		
Tínico	17.6	19 0	22.0	15.7	15 1	18.8		

PONDERACIÓN FRECUENCIAL

Cumple las normas EN 61672, EN 60651 y EN 60804 tipo 1

Ponderaciones A, C y Z

SALIDA AC

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Ponderación frecuencial: lineal

Sensibilidad a 137 dB y 1 kHz (Ganancia = 0dB): 6,5 Vrms (típico) Límite superior: 8,1 Vrms (típico); Impedancia de salida: 100Ω

Ganancia: 0 y 40 ± 0,2 dB

PONDERACIÓN TEMPORAL

L_F, L_S, L_I, conforme tolerancias clase 1

FILTROS DE OCTAVA

Clase 1 según EN 61260:95/ A1:A0 Frecuencias centrales nominales de las bandas de octava: 31,5, 63, 125, 250, 500, 1.000, 2.000, 4.000, 8.000, 16.000 Hz.

FLITROS DE TERCIO DE OCTAVA

Clase 1 según EN 61260:95/ A1:A0 Frecuencias centrales nominales de las bandas de tercio de octava: 20, 25, 31,5, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1.000, 1.250, 1.600, 2.000, 2.500, 3.150, 4.000, 5.000, 6.300, 8.000, 10.000 Hz

INFLUENCIA DE LA HUMEDAD

Margen de funcionamiento: 25 a 90 % Error máximo para 25 % <H.R.<90% a 40°C y 1 kHz: 0,5 dB Almacenamiento sin pilas: <93%

INFLUENCIA DE LOS CAMPOS MAGNÉTICOS

En un campo magnético de 80 A/m (1 oersted) a 50 Hz da una lectura inferior a 25 dB (A)

INFLUENCIA DE LA TEMPERATURA

Margen de funcionamiento: $-10 \text{ a} + 50 \text{ }^{\circ}\text{C}$ Error máximo (-10 a +50 $^{\circ}\text{C}$): 0,5 dB Almacenamiento sin pilas: $-20 \text{ a} + 60 \text{ }^{\circ}\text{C}$

INFLUENCIA DE LAS VIBRACIONES

Para frecuencias de 20 a 1000 Hz y 1 m/s²: < 75 dB(A)

ALIMENTACIÓN

2 pilas de 1,5 V tipo LR6 tamaño AA.

Duración típica con funcionamiento continuo:

Modo sonómetro: 15 horas
 Modo Analizador Espectro 1/1: 13 horas
 Modo analizador Espectro 1/3: 11,5 horas

Alimentador de red: AM240

Tabla 41. Especificaciones técnicas del sonómetro utilizado. Fuente: Fabricante CESVA.

6.1.1. ESPECIFICACIONES TÉCNICAS DE LAS TURBINAS GENERAL ELECTRIC MODELO GE130 – 3,8 MW

Los niveles de potencia acústica aparente LWA, k se dan en función de la velocidad del viento a una altura del buje (vHH). Las velocidades del viento correspondientes a 10m de altura sobre el nivel del suelo (v10m), se han obtenido asumiendo un valor logarítmico del perfil del viento. En este caso se ha obtenido una rugosidad superficial de referencia según IEC 61400-11 de zO, ref= 0,05m utilizado, que es representativo de las condiciones medias del terreno.

Funcionamiento normal: espectros de octava ponderados [dB]												
Altura del eje Velocidad del viento [m/s]		4	5	6	7	8	9	10	11	12	13	14.0- superior
Velocidad del viento a 10 m de altura, para una altura de buje de 85 m [m/s]		2,8	3,6	4,3	5,0	5,7	6,4	7,1	7,8	8,5	9,3	10- superior
Velocidad del viento a 10 m de altura, para una altura de buje de 110m [m/s]		2,8	3,4	41,0	4,8	5,5	6,2	6,9	7,6	8,3	8,9	9.6- superior
Frecuencia [Hz]	16	49,2	49,7	53,1	56,3	59,0	61,5	61,9	62,0	62,0	61,9	61,8
	32	64,8	64,9	67,8	70,7	73,2	75,8	76,1	76,3	76,3	76,3	76,2
	63	77,5	77,4	79,7	82,6	84,9	87,7	88,0	88,1	88,1	88,1	88,0
	125	86,6	86,9	89,1	92,1	94,4	96,4	96,7	96,7	96,6	96,5	96,5
	250	89,3	89,9	92,5	95,9	98,6	99,9	100,1	99,9	99,7	99,6	99,6
	500	89,3	89,8	92,4	96,0	99,0	101,0	101,1	101,0	101,1	101,1	101,1
	1000	89,5	89,9	92,2	95,5	98,3	101,0	101,2	101,3	101,5	101,6	101,7
	2000	87,1	88,4	90,3	93,4	95,9	98,4	98,7	98,9	99,0	98,8	98,7
	4000	78,3	81,2	83,2	86,0	88,3	90,1	90,2	90,1	89,5	88,6	88,1
	8000	60,0	62,1	64,4	67,5	69,9	70,4	69,8	69,2	68,1	67,0	66,4
Nivel de potencia acústica total [dB]		95,7	96,3	98,7	102,0	104,7	106,8	107,0	107,0	107,0	107,0	107,0

Tabla 40. Niveles de ruido de acuerdo a las especificaciones técnicas de la turbina General Electric modelo GE130 – 3,8

MW y a los niveles de viento a dos alturas. Fuente: Fabricante General Electric.

Estos valores, son niveles de ruido estimados. En los siguientes apartados, se detallan los valores de ruido tomados en campo.

6.1.2. SOFTWARE UTILIZADO PARA LAS MEDICIONES

El tratamiento de las mediciones realizadas en campo se realiza a través de software CESVA CAPTURE Studio, que permite:

- Eliminación de ruidos no deseados para la medición como puertas, voces, etc.
- Selección dinámica de intervalos para su edición (gráfica y numérica).
- Cálculo de valores globales, espectrales y estadística de intervalos temporales.

Posteriormente, los datos obtenidos de las mediciones se analizan con un Sistema de información geográfica (SIG) que permite la obtención de la representación gráfica incluida en este informe.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

A partir de los datos tomados en campo en el entorno de los Parques Eólicos se ha representado el valor del Nivel de Exposición Sonora (LAE), que permite calcular los niveles sonoros que resultan de cualquier combinación de fuentes sonoras.

Para la elaboración de estos mapas se pueden elegir diferentes métodos que generan curvas de ruido que permiten representar gráficamente los niveles de contaminación acústica existentes en una zona. En este caso, la metodología elegida ha consistido en realizar mediciones *in situ* de ruido ambiental y posteriormente, al aplicar técnicas de interpolación, estimar valores desconocidos a partir de los registros realizados.

Una de las técnicas de interpolación más usadas es el IDW (Inverse Distance Weighting). Este método se basa en la auto-correlación espacial de los puntos para la predicción y generación de superficies continuas. Esta técnica ha sido ampliamente utilizada para la generación mapas de ruido ya que permite crear superficies continúas facilitando el análisis de la condición acústica del sector en estudio.

La cartografía elaborada para este estudio ha permitido conocer la distribución espacial del ruido en el entorno del parque eólico, así como identificar otras fuentes de ruido.

6.2. ANÁLISIS DEL CÁLCULO DE RUIDO POTENCIAL

Para la realización del estudio, se ha utilizado el módulo DECIBEL del programa WindPRO 3.2 donde se estiman los niveles de ruido generados por los parques eólicos. Los datos primarios de emisión de ruido de las máquinas utilizadas, es la General Electric modelo GE130 – 3,8 MW de 130 metros de altura de buje.

El simulador asigna un valor de la presión acústica audible a cada zona sensible a partir de las fuentes de ruido asignadas a los aerogeneradores.

Por último, hay que sumar estos valores obtenidos al ruido ambiental existente en la zona. Este ruido se estima con un nivel de 30 dB de día (de 8 horas a 21 horas) y de noche (de 21 horas a 8 horas). Aplicable en este estudio a las Áreas de Uso Residencial C.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Para el cálculo de Modelo de ruido y sus mapas de impacto acústico se ha utilizado el Modelo DECIBEL de windPRO 3.3 basado en la normativa Internacional **ISO 9613-2** para período diurno y nocturno:

Calculado L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet

(al calcular con atenuación de tierra, entonces Dc = Domega)

LWA,ref: Nivel presión de sonido en AG

K: Tono puro

Dc: Corrección de directividad

Adiv: la atenuación debido a la divergencia geométrica

Aatm: la atenuación debida a la absorción atmosférica

Agr: la atenuación debida al efecto de la tierra

Abar: la atenuación debido a una barrera

Amisc: la atenuación debida a otros efectos

Cmet: Corrección meteorológica

En la siguiente imagen se muestran los resultados obtenidos, en relación al nivel de presión acústica. Este nivel de presión acústica es la emisión de ruido del parque eólico junto con el nivel de presión acústica del ruido ambiental como segunda fuente de emisión.

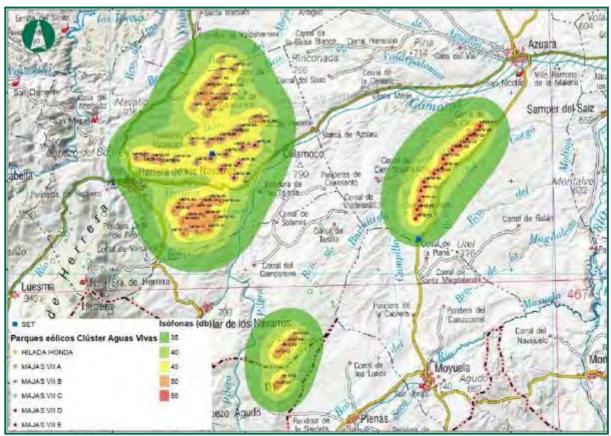


Figura 67. Niveles de presión sonora obtenidos.

El estudio realizado muestra que los niveles estimados de inmisión para el área estudiada, la cual se encuadra el área de alta sensibilidad acústica b, no supera el umbral fijado por el anexo III, sobre los objetivos de calidad acústica de la Ley 7/2010, de 18 de noviembre, de protección contra la contaminación acústica del Gobierno de Aragón.

6.3. RUIDO DE FONDO. ESCENARIO ACÚSTICO

El ámbito de los parques eólicos en estudio se localiza en una zona en la que las fuentes emisoras de ruido más cercanas provienen de la red viaria, otros parques eólicos próximos y en la actualidad las obras para la construcción de parques eólicos nuevos:

VÍAS DE COMUNICACIÓN	DISTANCIA MÍNIMA A LA INFRAESTRUCTURA (m)	LOCALIZACIÓN RESPECTO AL PARQUE EÓLICO
A-1506	4	CENTRO
A-1101	110	OESTE
A-2306	125	ESTE
CV-304	600	OESTE

Tabla 41. Distancias de los Parques eólicos a las fuentes de emisión de ruido de vías de comunicación

6.4. MEDICIONES REALIZADAS

Se realizan mediciones en la localización del parque eólico y su área de influencia, determinada por el cálculo teórico del impacto acústico anteriormente expuesto.

Estas mediciones se tomaron en horario diurno con las siguientes condiciones de viento y funcionamiento de los parques eólicos:

Velocidad de viento de entre 5 y 6 m/s y aerogeneradores en funcionamiento.

PUNTOS DE MEDICIÓN:

	COORDENADAS			
	(UTM ETRS89)		UBICACIÓN	
NÚMERO	X	Υ		
65	664889	4563110	LM7A 06	
66	664375	4563136	LMA 03	
67	664009	4562972	LM7A 04	
68	664201	4562462	LM7A 07	
69	664633	4562381	LM7A 10	
70	663665	4562280	LM7A 08	
71	663183	4562162	LM7A 09	
72	663179	4561651	LM7A 13	
73	663789	4561755	LM7A 12	
74	664340	4561791	LM7A 11	
75	663594	4562872	LM7A 05	
76	663020	4562996	LM7A 01	
77	662798	4562657	LM7A 02	
78	660672	4564171	H. Navarros	
79	662834	4564948	LMB 09	
80	663834	4564834	LM7B 13	
81	663619	4565756	LM7B 08	
82	664312	4565741	LM7B 07	
83	665128	4565246	LM7B 11	
84	664879	4565926	LM7B 06	
85	665399	4566130	LM7B 05	
86	665733	4566331	LM7B 04	
87	666669	4566900	LM7C 08	
88	666322	4566755	LM7C 05	
89	665486	4569072	LMC 13	
90	664898	4569434	LM7B 12	
91	664775	4568908	LM7C 06	
92	664530	4568509	LM7C 02	

	COORDENADAS		
	(UTM ETRS89)		UBICACIÓN
NÚMERO	x	Υ	
93	664186	4568251	LM7C 01
94	664886	4567782	LM7C 09
95	665170	4568137	LM7C 03
96	664478	4567557	LM7C 04
97	663837	4567782	LMC 10
98	663625	4567305	LM7C 07
99	664253	4567052	LM7C 11
100	664411	4565045	LM7B 12
101	665711	4564797	LME 03
102	664922	4564534	LME 04
103	665478	4564163	LME 05
104	661030	4565069	LMB 01
105	661415	4565161	LMB 02
106	661832	4564999	LMB 03
108	662220	4564947	LMB 10

Tabla 42. Descripción de los puntos de registro.

6.4.1. PARÁMETROS REGISTRADOS

Del total de parámetros registrados en cada medición, se extraen los usados en el análisis, obteniendo la siguiente tabla:

NÚMERO REGISTRO	LAE (dB)	LAT (dB)	L90 (dB)	N registro
65	77	65,7	60,3	65
66	73,3	63,4	60,7	66
67	73,4	62,1	58,7	67
68	62,4	52	49	68
69	68,8	60,3	57,3	69
70	67,9	58,3	56,2	70
71	71,8	61,8	59,1	71
72	68,4	57,6	55,9	72
73	69,3	60,2	57,5	73
74	73,9	64,9	60,9	74
75	70,7	60,3	58,3	75
76	69,3	57,3	56,5	76
77	74,4	67,4	63,8	77
78	53,6	46,6	42,4	78
79	70,5	60,5	59,2	85
80	73,3	63,4	60,8	84
81	75,1	65,8	60,2	85

NÚMERO REGISTRO	LAE (dB)	LAT (dB)	L90 (dB)	N registro
82	67,1	57,1	53,7	86
83	70,2	58,9	57	88
84	75,3	65,8	63,4	89
85	72,8	62,89	60,6	90
86	77	66,2	59,3	91
87	70	60	58,5	98
88	69,5	60,4	59,1	97
89	71,1	60,8	58,6	99
90	72,4	62,1	59,8	100
91	75,7	64,1	61,3	101
92	69,8	59,8	56,4	102
93	70,4	60,2	57	103
94	67,5	58,1	55,1	104
95	72,2	63,2	60,9	105
96	71,1	60,9	59,9	106
97	70	59,6	57,5	107
98	70	59,6	57,7	108
99	68,5	59,3	56,8	109
100	69,8	59,8	57,1	87
101	74,9	61,9	60,5	94
102	75,5	64	64,3	95
103	73,2	63	59,4	96
104	69,3	58,4	57,8	79
105	73,4	52,3	59,2	80
106	70,5	59,9	57,9	81
108	69,3	61,2	58,5	82

Tabla 43. Parámetros medidos.

Donde,

- LAT es el nivel de presión sonora continua equivalente con tiempo de integración 5s, con ponderación A.
- L90 es el nivel de presión sonora más frecuente durante el 90% del tiempo que dura la medición.
- LAE es el Nivel de Exposición Sonora (SEL), aquel nivel constante que para una duración de un segundo tiene la misma cantidad de energía acústica que el suceso de ruido dado, con ponderación A. Se trata de un índice útil para calcular los niveles sonoros que resultan de cualquier combinación de fuentes sonoras.

Con estos datos se obtiene la siguiente gráfica

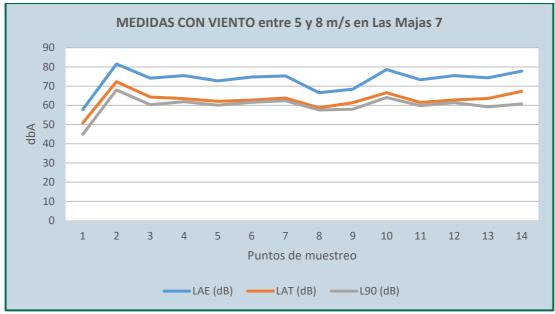


Figura 68. Registros en los puntos de medida., entre 5 y 8 m/s

A continuación, incluiremos estos datos en la herramienta SIG de interpolación (IDW). La interpolación predice valores para las celdas de un ráster a partir de una cantidad limitada de puntos de datos de muestra. Puede utilizarse para predecir valores desconocidos de cualquier dato de un punto geográfico, tales como: elevación, precipitaciones, concentraciones químicas, niveles de ruido, etc.

La herramienta IDW (Ponderación de distancia inversa) utiliza un método de interpolación que estima los valores de las celdas calculando promedios de los valores de los puntos de datos de muestra en la vecindad de cada celda de procesamiento. Cuanto más cerca está un punto del centro de la celda que se está estimando, más influencia o peso tendrá en el proceso de cálculo del promedio.

Introduciendo los datos de LAE tomados en campo se puede apreciar la distribución espacial de los niveles de ruido existentes en el ámbito del clúster Aguasvivas:

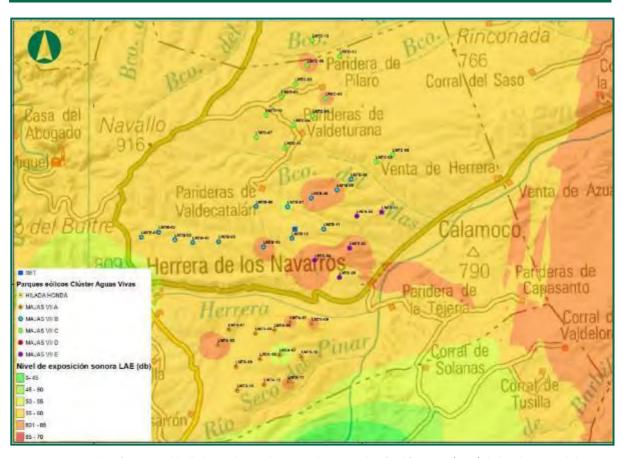


Figura 69. Distribución espacial hallada mediante dos tipos de interpolación diferentes (IDW) de los datos medidos en campo con una velocidad de viento entre 5 y 8 m/s y parques eólicos en funcionamiento.

Las mediciones realizadas permiten analizar el ruido en la zona de ubicación de los Parques Eólicos y su área de influencia. Se han realizado mediciones en situación de viento y funcionamiento de las máquinas con el fin de caracterizar el nivel de percepción acústica de la zona.

Para la obtención de las mediciones se utiliza un sonómetro CESVA, modelo SC310, realizando los registros en puntos próximos a los propios aerogeneradores, así como núcleos urbanos y residenciales cercanos, polígonos industriales, carreteras, vías de tren y otras infraestructuras de la zona.

En el ámbito de estudio no se localizan importantes focos de emisión de ruido.

En situación de viento del orden de 5 a 8 m/s, dentro de los parques eólicos, se registran valores de LAT en torno a los 68,5 – 64,9 dB, mientras que los valores de LAE oscilan entre los 58,4 y 77 dB. Por otro lado, en zonas exteriores al parque eólico y sin ruidos procedentes del tráfico, se alcanzan valores de LAT inferiores a 46,6 dB y menores de 53,8 dB en el caso de LAE.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Al analizar los resultados obtenidos, gracias a la representación gráfica de los datos medidos *in situ* utilizando el método de interpolación anteriormente descrito, se observa cómo los valores más altos de ruido ambiental (nivel de exposición sonora o LAE) se localizan en las inmediaciones de las carreteras. Sin embargo, este ruido se disipa rápidamente, al llegar a las zonas desprovistas de este tipo de infraestructuras. Cabe indicar que el ruido generado por los aerogeneradores no afecta a los núcleos de población más cercanos, como Herrera de los Navarros cumpliendo así con la legislación vigente.

Este hecho pone de manifiesto que los niveles sonoros más altos encontrados en el entorno no se deben al menos únicamente a la presencia de los parques eólicos, sino a los focos de ruido de las vías de comunicación.

7. GESTIÓN DE RESIDUOS

7.1. LEGISLACIÓN EN MATERIA DE RESIDUOS

En base a la Ley 22/2011, de 28 de julio, de residuos y suelos contaminados, se desarrolló el Plan de Gestión Integral de Residuos de Aragón.

Según el artículo 17 de esta Ley 22/2011, las obligaciones de los productores de los residuos son las siguientes:

- 1. El productor u otro poseedor inicial de residuos, para asegurar el tratamiento adecuado de sus residuos, estará obligado a:
 - a) Realizar el tratamiento de los residuos por sí mismo.
 - b) Encargar el tratamiento de sus residuos a un negociante, o a una entidad o empresa, todos ellos registrados conforme a lo establecido en esta Ley.
 - c) Entregar los residuos a una entidad pública o privada de recogida de residuos, incluidas las entidades de economía social, para su tratamiento. Dichas operaciones deberán acreditarse documentalmente.
- 2. La entrega de los residuos domésticos para su tratamiento se realizará en los términos que establezcan las ordenanzas locales.
- 3. El productor u otro poseedor inicial de residuos comerciales no peligrosos deberá acreditar documentalmente la correcta gestión de sus residuos ante la entidad local o podrá acogerse al sistema público de gestión de los mismos, cuando exista, en los términos que establezcan las ordenanzas de las Entidades Locales. En caso de incumplimiento de las obligaciones de gestión de residuos comerciales no peligrosos por su productor u otro poseedor, la entidad local asumirá subsidiariamente la gestión y podrá repercutir al obligado a realizarla, el coste real de la misma. Todo ello sin perjuicio de las responsabilidades en que el obligado hubiera podido incurrir.
- 4. El productor u otro poseedor inicial de residuos, para facilitar la gestión de sus residuos, estará obligado a:

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

- a) Suministrar a las empresas autorizadas para llevar a cabo la gestión de residuos la información necesaria para su adecuado tratamiento y eliminación.
- b) Proporcionar a las Entidades Locales información sobre los residuos que les entreguen cuando presenten características especiales, que puedan producir trastornos en el transporte, recogida, valorización o eliminación.
- c) Informar inmediatamente a la administración ambiental competente en caso de desaparición, pérdida o escape de residuos peligrosos o de aquellos que por su naturaleza o cantidad puedan dañar el medio ambiente.
- 5. Las normas de cada flujo de residuos podrán establecer la obligación del productor u otro poseedor de residuos de separarlos por tipos de materiales, en los términos y condiciones que reglamentariamente se determinen, y siempre que esta obligación sea técnica, económica y medioambientalmente factible y adecuada, para cumplir los criterios de calidad necesarios para los sectores de reciclado correspondientes.
- 6. Además de las obligaciones previstas en este artículo, el productor u otro poseedor de residuos peligrosos cumplirá los requisitos recogidos en el procedimiento reglamentariamente establecido relativo a los residuos peligrosos. Los productores de residuos peligrosos estarán obligados a elaborar y remitir a la Comunidad Autónoma un estudio de minimización comprometiéndose a reducir la producción de sus residuos. Quedan exentos de esta obligación los pequeños productores de residuos peligrosos cuya producción no supere la cantidad reglamentariamente establecida.
- 7. El productor de residuos peligrosos podrá ser obligado a suscribir una garantía financiera que cubra las responsabilidades a que puedan dar lugar sus actividades atendiendo a sus características, peligrosidad y potencial de riesgo. Quedan exentos de esta obligación los pequeños productores de residuos peligrosos definidos reglamentariamente.
- 8. La responsabilidad de los productores u otros poseedores iniciales de residuos domésticos y comerciales, concluye, cuando los hayan entregado en los términos previstos en las ordenanzas locales y en el resto de la normativa aplicable. La responsabilidad de los demás productores u otros poseedores iniciales de residuos, cuando no realicen el tratamiento por sí mismos, concluye cuando los entreguen a un negociante para su tratamiento, o a una empresa o entidad

de tratamiento autorizado siempre que la entrega se acredite documentalmente y se realice cumpliendo los requisitos legalmente establecidos.

Además, la Declaración de Impacto Ambiental estipula lo siguiente:

"Todos los residuos que se pudieran generar durante las obras, así como en fase de explotación, se deberán retirar del campo y se gestionarán adecuadamente según su calificación y codificación, debiendo quedar el entorno libre de cualquier elemento artificial."

7.2. GESTIÓN DE RESIDUOS EN LAS INSTALACIONES

Para cumplir con estas obligaciones, se han habilitado zonas de recogida selectiva, tanto de residuos peligrosos como de no peligrosos, estos últimos con contenedores diferenciados para: Papel y cartón, envases, y orgánico/resto.

Para la recogida selectiva de residuos peligrosos se han construido almacenes homologados, que disponen de base de hormigón, techado y vallado en las Subestaciones. En el interior de estos almacenes los residuos se separan utilizando bidones con cierre hermético, correctamente identificados. En estos almacenes permanecen un máximo de seis meses, que es la periodicidad a la que están contratadas las recogidas.

Las empresas promotoras están inscritas en el Registro de Pequeños Productores de Residuos Peligrosos de Aragón, con números de inscripción siguientes:

PARQUE	SOCIEDAD	Nº REGISTRO
LAS MAJAS VII E	DESARROLLO EÓLICO LAS MAJAS VI, SL	AR/PP -13403

Tabla 44. Código de registro como pequeño productor de residuos de la sociedad promotora

La gestión y recogida de todos los residuos está contratada a la empresa GRIÑÓ ECOLOGICO S.A. con CIF: A25530163 ubicada en P.I. Los Paules calle Valle del Cinca 3-4, 22400 Monzón (Huesca). Se trata de un gestor autorizado registrado con código **AR/GRP-112** y transportista autorizado con código **AR/TRP – 3325**.

Durante este cuatrimestre, no se han realizado retiradas de residuos peligrosos.

Respecto a residuos no peligrosos, tampoco se han realizado retirada durante este cuatrimestre.

Fotografía 30. Almacén de residuos para gestor autorizado. Fuente: Repsol.

Fotografía 31. Contenedores de residuos asimilables a urbanos. Fuente: Repsol.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Adicionalmente, las DIA también contempla que:

"En caso de generarse aguas residuales, deberán de ser tratadas convenientemente con objeto de cumplir con los estándares de calidad fijados en la normativa de aguas vigente."

Las únicas aguas residuales son las generadas en los servicios sanitarios situados en las subestaciones, que son recogidos en una fosa séptica que será vaciada de manera periódica.

A lo largo de este cuatrimestre, no ha sido necesario realizar retirada de las aguas residuales almacenadas en fosa séptica.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

8. PAISAJE

Una de las afecciones sobre el medio natural por el desarrollo de los parques eólicos y por las líneas de evacuación aéreas en las afecciones sobre el paisaje, en concreto debido modificación fisiografía del terreno, y por el impacto visual de los propios aerogeneradores y las líneas aéreas. En las Declaraciones de Impacto ambiental se incluyen varias medidas encaminadas a mitigar este impacto.

"Con objeto de minimizar la contaminación lumínica y los impactos sobre el paisaje y sobre las poblaciones más próximas, así como para reducir los posibles efectos negativos sobre aves y quirópteros, en los aerogeneradores que se prevea su balizamiento aeronáutico, se instalará un sistema de iluminación Dual Media A/Media C. Es decir, durante el día y el crepúsculo, la iluminación será de mediana intensidad tipo A (luz de color blanco, con destellos) y durante la noche, la iluminación será de mediana intensidad tipo C (luz de color rojo, fija). El señalamiento de la torre de medición, en caso de que se requiera, se realizará igualmente mediante un sistema de iluminación Dual Media A/Media C."

Este sistema se encuentra actualmente instalado y en funcionamiento.

"La restitución de los terrenos afectados a sus condiciones fisiográficas iniciales seguirán el plan de restauración desarrollado en el estudio de impacto ambiental, y que tiene como objeto la restauración vegetal y la integración paisajística del mismo, minimizando los impactos sobre el medio. Los procesos erosivos que se puedan generar a consecuencia de la construcción del parque eólico, deberán ser corregidos durante toda la vida útil de la instalación."

En los Estudios de Impacto ambiental se incluye un análisis del paisaje y cuenca visual que califica la calidad intrínseca del paisaje como baja.

El paisaje lo conforma el uso del suelo, el tipo de vegetación y la orografía. El uso del suelo es eminentemente agrícola, de secano (trigo, cebada y almendra). Con un tipo de suelo muy productivo, aunque más escaso en Azuara. La orografía del terreno es irregular, formando pequeñas colinas, lo que impide el aprovechamiento agrícola de toda la superficie, y en algunas ocasiones haciendo uso de bancales. Estas zonas no cultivadas, son un reducto para las especies silvestres (*Thymus vulgaris, Lygeum spartum, Retama sphaerocarpa, Quercus ilex, Quercus coccifera, Cistus albidus, Pinus halepensis, Pinus pinaster y otras*). El suelo superficial de tipo arcilloso, presenta una coloración roja-

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

anaranjada (2.5YR 4/6) que contrasta fuertemente con la vegetación y con los elementos de color claro. Las figuras de corrales de adobe y la escasa presencia humana, conforma un paisaje apacible.

Las restituciones del terreno y revegetaciones efectuadas detalladas en el apartado SEGUIMIENTO DE LA RESTAURACIÓN, contribuyen a mitigar esta afección sobre el paisaje.

De acuerdo con los valores de fragilidad descritos por (Escribano et al. 1991), el grado de absorción visual ante cambios en el paisaje sin deterioro de la calidad del paisaje, resulta moderada.

En cada uno de los aerogeneradores, se encuentra instalada un sistema de iluminación automático exterior, que ilumina el acceso a la torre. Por los problemas que ocasionaba a la quiropterofauna, se procedió a la desconexión de las luces durante el mes de mayo restas luces fueron desconectadas, antes del 12 de julio. Esta actuación inició con anterioridad al condicionado de la administración sobre la eliminación de las luces exteriores.

9. CONDICIONES TÉCNICAS Y GARANTÍA DE SEGURIDAD

9.1. SISTEMAS CONTRA INCENDIOS

De acuerdo con el Dentro del Real Decreto 393/2007, de 23 de marzo, por el que se aprueba la Norma Básica de Autoprotección de los centros, establecimientos y dependencias dedicados a actividades que puedan dar origen a situaciones de emergencia, se ha elaborado para las instalaciones de REPSOL RENOVABLES, un Plan de Autoprotección, denominado Plan de Autoprotección del Proyecto eólico Aguasvivas Repsol Renovables, redactado en marzo de 2021. En cual se sigue aplicando hasta la fecha. Revisión de sistemas de detección de incendios y extinción de incendios, última realizada el 5 de agosto de 2021.

Además, cuenta con el **Plan de Emergencia Ambiental**, desarrollado para la fase de operación y mantenimiento, el cual desarrolla protocolas de actuación ante incidentes que ocasionen daños al medio ambiente. Estos aspectos ambientales de emergencia son los siguientes:

- Derrame Químico
- Afección a la Fauna
- Afección a la Vegetación
- Afección al Patrimonio
- Afección al medio hídrico, afección a redes de drenaje
- Emisión de gas fluorado o afección de ozono
- Incendio/Explosión
- Rotura de fosa séptica o sistemas de depuración
- Trasmisión de la Legionela

9.2. PREVENCIÓN DE ACCIDENTES Y SEÑALIZACIÓN

En cada Subestación eléctrica se han añadido nueva cartelería para informar a los usuarios de las siguientes:

Procedimiento de comunicación de la emergencia,

- Salidas de evacuación
- Advertencia de no tocar las aves de los congeladores
- Información de las temperaturas adecuadas para el ahorro energético y reducción de la huella de carbono.
- Recordatorio de apagado de las luces.
- Señalización de tipo de residuo por contenedor de reciclaje.

Figura 32. Señalizaciones en los congeladores de almacenamiento de cadáveres de fauna.

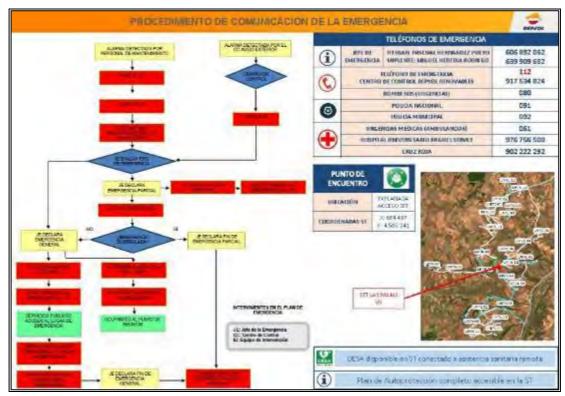


Figura 33. Señalización ante los congeladores en las SET.

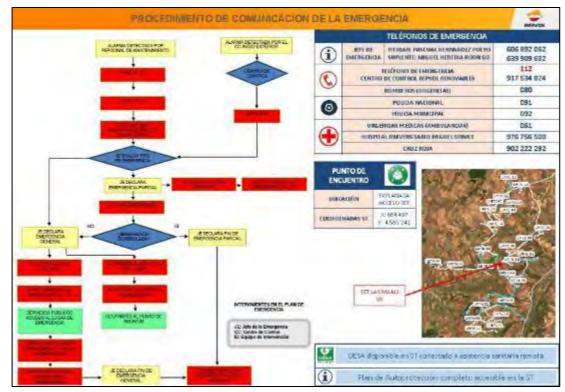


Figura 34. Señalización ante los congeladores en las SET.



Figura 35. Ubicación coordenadas UTM de las máquinas instaladas

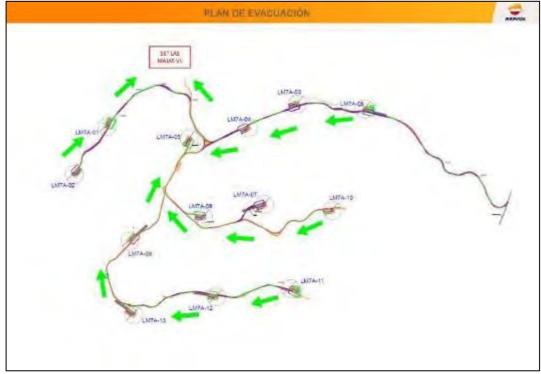


Figura 36. Señalizaciones salidas de evacuación del PE "LM7A".

Figura 37. Señalización ante los contenedores verdes en las SET.

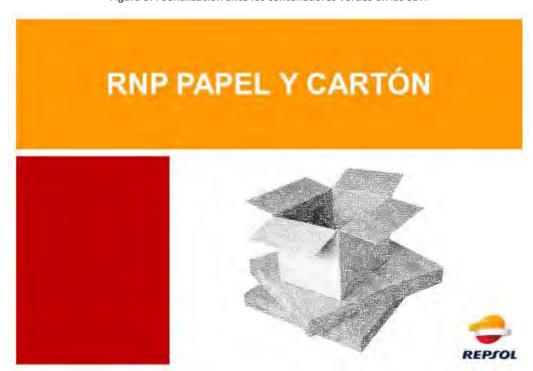


Figura 38. Señalización ante los contenedores azules en las SET.

Figura 39 Señalización ante los contenedores amarillos en las SET.

Figura 40. Señalización temperatura termostato en las SET.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

10. CONCLUSIONES

En el presente estudio de fauna, durante este segundo cuatrimestre en su cuarto año de seguimiento, se ha seguido realizando el estudio de aves y quirópteros, de la siniestralidad, así como de las especies que habitan en la zona de estudio. También, se ha continuado con la búsqueda de nidificaciones/cría de especies de interés y la monitorización de nidos, así como las zonas de invernada. Ahondando en el conocimiento sobre el uso del espacio y el comportamiento en vuelo de las grandes aves presentes.

Se han observado un total de 36 especies diferentes de aves, siendo un total de 511 los ejemplares detectados, tanto de vuelo de rapaces como de las pequeñas aves. Las especies más abundantes son los fringílidos, como: jilgueros y pardillos, los aláudidos, como la calandria o la cogujada montesina y escribano triguero.

Las aves de gran envergadura son mayoritariamente buitres (*Gyps fulvus*). El cernícalo vulgar (*Falco tinnunculus*) durante este cuatrimestre se ha observado ejemplares en nuevas zonas de campeo lo que pudieran indicar una redistribución de las áreas de caza o de una ampliación de su distribución. Durante el inicio de la primavera, se empezaron a ver rapaces estivales como la culebrera europea (*Circaetus gallicus*) o el milano negro (*Milvus migrans*). Cabe destacar la presencia de paso migratorio de cernícalo primilla (*Falco naumanni*).

En cuanto a quirópteros, durante este cuatrimestre la especie más representada en el área de estudio es *Pipistrellus pipistrellus*, con 1.250 contactos, lo que representa el 16% del total. El segundo grupo más representado es el formado por *Pipistrellus khulii/Pipistrellus nathusii*, con 1.005 contactos, un casi un 13%. El grupo formado por *Nyctalus sp. /Eptesicus sp.*, representan el 4% del total con 309 contactos, son frecuentes en hábitats forestales o semiforestales. La especie *Tadarida teniotis* obtuvo 256 contactos, *Pipistrellus pygmaeus/Miniopterus schreibersii* registraron 226 contactos y la especie *Hypsugo savii* obtuvo 194 contactos. El resto de las especies han tenido un bajo número de contactos, Plecotus sp. obtuvo 23 contactos, *Rhinolophus ferrumequinum* con 18 contactos, Myotis sp. con 3 contactos, *Barbastella barbastellus* con 2 contactos y *Rhinolophus hipposideros* con 1 contacto. Muchas de estas especies se han detectado también en el trabajo de revisión de siniestralidad. Resaltar que 4.517 contactos corresponden con pulsos no identificados. La media de contactos por noche ha sido mayor en las estaciones 25 y 26 con vegetación correspondiente a pastos agrícolas, con una diferencia notable al resto. El periodo de mayor actividad, en el ciclo biológico de este grupo, es

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

el de Lactancia que cubre los meses de junio y julio. La franja de mayor actividad se ha dado entre las 22h y las 00h.

A lo largo de este cuatrimestre, se han detectado 5 individuos, siendo uno de ellos un quiróptero. La mortalidad anual ha sido de 1 colisión/WTG. Se ha obtenido un valor de mortandad anual teórico de 39 ejemplares. En comparación con los años anteriores, la mortandad anual estimada, se ha aumentado un 30,7% con respecto al 2021 y 2023. Los meses con mayor siniestralidad acumulada son mayo y agosto que corresponden con el final y el inicio de la migración prenupcial y postnupcial respectivamente.

Una de las colisiones producidas se trataba de un cernícalo primilla, catalogado como vulnerable a nivel autonómico (el resto de las especies están recogidas en el Listado de Especies en Régimen de Protección Especial). Debido a la sensibilidad de la especie, se procedió a la parada precautoria de la máquina LM7E-03. De manera supletoria y puntual, se llevó a cabo jornadas de 12 horas de Vigilancia Ambiental con el objetivo de mandar orden de parada preventiva a las máquinas que tuvieran riesgo de colisión, únicamente en días de activación.

En la revisión de mortandad en las líneas de alta tensión, no se han encontrado aves muertas a causa de la colisión con el cable. Todos los kilómetros de línea de evacuación eléctrica de los parques recogidos en este informe cuentan con salvapájaros en el cable de tierra.

Todos los cadáveres han sido recogidos de acuerdo con el protocolo de recogida de mortandad vigente hasta la fecha e incluyendo las indicaciones recibidas por los agentes forestales. Los siniestros recogidos se depositan en los congeladores que disponen los parques eólicos. En los casos de especies catalogadas, se ha informado en el momento de la detección al Agente de Protección de la Naturaleza encargado de la zona, y se ha procedido según sus indicaciones. Al finalizar las revisiones, se envían los datos correspondientes de las colisiones al coordinador de los Agentes de Medioambiente.

Los sistemas anticolisión de aves cuenta con cuatro cámaras que monitoriza alrededor de los aerogeneradores detectando las aves en tiempo real, estas se hallan instaladas en 2 de los 5 aerogeneradores que compone el parque eólico. Respecto al estudio y análisis de las circunstancias en que se produce cada colisión y de mejorar las medidas de mitigación, decir que se ha trabajado de forma conjunta mediante un equipo de trabajo, con la empresa que gestiona y ha implantado los sistemas de DtBird, en la búsqueda de colisiones en periodos reportados y en el análisis causa efecto

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

de cada una. Con ellos se ha realizado la tarea de visionados de vídeos, visualizado un total de 181 de los cuales se han realizado búsquedas entorno a colisiones producidas, además, se han estudiado pautas de comportamiento de las aves frente a la novedad de las infraestructuras. Debido al número de vuelos generados cada día, resulta muy costoso revisar y analizarlos todos. También se ha trabajado en la estandarización de criterios para el análisis de eficacia de estos.

De los datos recogidos en estos sistemas de DtBird, están permitiendo obtener datos suficientes para conocer el grado de eficacia de los mismos, así como conocer el comportamiento que toman las aves frente a la novedad de estos. Analizando de forma independientemente los datos obtenidos en cada uno de los parques eólicos desde su instalación, la incidencia de mortandad en aves con envergadura superior a 60cm, la incidencia es mayo en los aerogeneradores sin los sistemas de disuasión de la incidencia total. Para aves de menor tamaño sucede al revés. De todos modos, todavía es necesario recabar mayor número de datos, por lo que es necesario continuar con los análisis durante un periodo más prolongado antes de poder extraer conclusiones.

Gracias a la revisión de vídeo en torno a la mortandad detectada, se están observando distintos comportamientos de las aves frente a las palas de los aerogeneradores eólicos. Se ha observado que los buitres modifican sus trayectorias de vuelo en días de poco viento. Los cernícalos vulgares y pequeñas aves en los vuelos próximos a las palas, son las más frecuentes. Las pequeñas aves son las que representa mayor número de vuelos registrados, estas suelen pasar entre el rotor con más asiduidad durante las primeras horas del día. Además, durante las búsquedas de colisiones, se ha encontrado la grabación del momento de la colisión de un buitre en una posición de otro parque de este clúster.

DTBird lleva dos años desarrollando un nuevo software de detección, que pueda trabajar con el hardware (cámaras y ordenadores) ya instalado, y que aumente la detectabilidad y reduzca los Falsos Positivos. Una de las características del nuevo software es la detección en las zonas de la imagen donde se están moviendo las palas (donde el software de detección actual no opera para evitar FP de palas). Con este nuevo software la activación de acciones de mitigación (sonido o parada del aerogenerador) será más eficaz y se aumentará la capacidad de registro de colisiones. La implantación de este software se realizará a lo largo del año. En esta primera fase o un poco después se incluirá un indicador del riesgo de colisión de cada vuelo, para reducir el número de vuelos a revisar visualmente por ornitólogo para comprobar si se ha producido una colisión. Además, se han diseñado unas nuevas

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

carcasas para las cámaras que evitarán mancharse las lentes de las cámaras, que dificultan las detecciones, y que se podrá limpiar con mayor facilidad. Actualmente, estos avances, se encuentra en periodo de calibración para su inminente puesta en funcionamiento. Otra de las líneas de desarrollo es el estudio de los sonidos emitidos por la disuasión, testeando grados de eficacia para distintos tipos de audios, con el fin de aumentar el número de aves disuadidas.

Por otro lado, de forma complementaria al sistema de DtBird, se aplicarán otras medidas para evitar las colisiones de acuerdo con los requerimientos del Protocolo de la Dirección General de Medio Natural y Gestión Forestal en relación con la adopción de medidas adicionales de protección en los casos de aerogeneradores conflictivos para la fauna en parques eólicos de Aragón.

La aplicación de dichas medidas y sus resultados, se plasmarán en los futuros informes, que, con una base de datos mayor, permitirá garantizar una mayor objetividad de los resultados y tener una capacidad de análisis mayor.

Respecto a la erosión hídrica, durante la primavera se detectó indicios de acarcavamiento en taludes y tramos de las pistas. Se realizó la limpieza de cunetas de todas las pistas, como medida preventiva antes del periodo de lluvias. También se restauró dos grandes taludes de pistas de acceso a los aerogeneradores, se han implantado fibra de coco y malla metálica para evitar la caída de tierra y desmorone de los taludes. Además, se hormigonó cunetas para evitar la erosión de los mismos. A lo largo de este cuatrimestre, se ha observado un correcto funcionamiento de las mejoras, y se hará seguimiento durante la próxima temporada de lluvias.

Las infraestructuras no cuentan con captación de agua de red, únicamente se utiliza agua en los servicios sanitarios situados en las subestaciones, esta es suministrada mediante cisternas; las aguas residuales generadas se almacenan en una fosa séptica, que hasta la fecha de realización de este informe no ha sido necesario su vaciado.

El parque eólico cuenta con almacenes y contenedores homologados para residuos peligrosos y no peligrosos de acuerdo con la normativa de gestión de residuos, colocados en la SET las Majas VII y cuenta con una planificación para la retirada de estos por un gestor autorizado. Durante el trabajo de campo, se encuentran residuos, muchos de ellos residuos asimilables a urbano, otros son trapos utilizados para la limpieza de maquinaría.

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

Respecto al seguimiento a la evolución y restauración del paisaje, se ha llevado a cabo un plan de hidrosiembra en taludes y desmontes que había quedado desprovistos de vegetación, principalmente en taludes de las plataformas de los aerogeneradores. En estos taludes no ha arraigado la vegetación, y donde ha permaneciendo el suelo desnudo a la vista y con riesgo de erosión y lavado de la superficie vegetal del suelo. Se ha hecho un control del estado final del terreno para asegurar la recuperación de uso y la fisiografía anterior a la construcción de las infraestructuras. Durante este año, se ejecutó el plan de plantación, con especies previstas en el Plan de Vigilancia Ambiental, en las mismas zonas, que permitirá asentar el terreno y favorecer la colonización de la vegetación natural. Por otro lado, en cuanto a la revegetación realizada al inicio del proyecto, donde prosperó las revegetaciones realizadas mediante hidrosiembra y plantación en taludes y en la base de los aerogeneradores, se ha detectado el agostamiento de algunas plántulas. Esto se debe a que ha sido un año poco húmedo y a poca profundidad de suelo en algunas zonas. En los próximos meses, se seguirá la evolución de la vegetación.

Respecto al plan de hidrosiembra en taludes y desmontes que había quedado desprovistos de vegetación seguimiento a la evolución y restauración del paisaje, se llevó a cabo un plan de hidrosiembra, el cual se ha realizado un seguimiento de la evolución de la vegetación. En estos taludes ha arraigado la vegetación, y ha dado lugar al crecimiento de plantas de mayor porte. Además, se ha hecho un control del estado final del terreno para asegurar la recuperación de uso y la fisiografía anterior a la construcción de las infraestructuras.

De acuerdo con las medidas complementarias planteadas desarrolladas junto con el Servicio de Biodiversidad del Departamento de Desarrollo Rural y Sostenibilidad del Gobierno de Aragón, se acordó la realización de una única medida complementaria de mayor envergadura y que esta consistiera en la reintroducción de ejemplares de Águila perdicera (*Aquila fasciata*) en el Parque Natural de Sierra y Cañones de Guara, mediante una jaula Hacking. Para ello, se han contó las reuniones con el Servicio de Biodiversidad y contando con la asociación ecologista Grefa, para perfilar y poner en marcha el plan. El plan fue aprobado el 27 de septiembre de 2021 por el Servicio de Biodiversidad del Gobierno de Aragón. Previamente a la puesta en marcha, se realizó un trabajo de información en los medios de comunicación y en las localidades próximas. Pasados dos meses de su introducción en la jaula hacking, los pollos son liberados, pasando al seguimiento monitorizado a distancia, gracias a los emisores GPS que llevan incorporados. Desde el inicio del plan se han criado y puesto en libertad a 23 ejemplares: 5 pollos en 2022 y 7 en 2023 (se liberó también un adulto

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

recapturado) y 11 en 2024. Debido a la depredación y otras causas antrópicas se ha dado el fallecimiento de seis ejemplares desde que se inició el proyecto hasta ahora. Este año se han introducido 11 nuevos pollos en la jaula, liberados entre el 25 de julio y el 15 de agosto, dando continuidad al proyecto. Los ejemplares juveniles iniciaron la dispersión localizándose en distintos puntos de la Península Ibérica y uno en Francia. Solo uno ha permanecido en el lugar de liberación. Actualmente hay 17 águilas formando parte del proyecto, dos del 2022, cinco de 2023 y las 10 nuevas de 2024. Se seguirá informando sobre el desarrollo del proyecto y sus ejemplares liberados.

La instalación cuenta con un plan de emergencias y de sistemas contra incendios, con inspecciones trimestrales superadas. Se han certificado los sistemas contra incendios de las subestaciones eléctricas y las que se encuentran en cada torre de las turbinas. Cuenta además con el Plan de Autoprotección desarrollado que identifica y describe las instalaciones y sus posibles situaciones de emergencia planteando medidas preventivas y paliativas, para asegurar la seguridad de los trabajadores y de las instalaciones, así como para prevenir incendios. Estos planes han sido reforzados con un plan de información a todos los usuarios-trabajadores.

11. EQUIPO REDACTOR

El presente informe ha sido redactado, en el mes de octubre de 2024 por los técnicos que lo suscriben:

NOMBRE	TITULACION	FIRMA
--------	------------	-------

Javier Domínguez Licenciado en Ciencias Ambientales

María Ángeles
Asensio Corredor
Geografía y
Ordenación del

Territorio

Paula Borja Jiménez Grado en Biología

For the

Zaragoza, a 2 de octubre de 2024.

El presente documento puede incluir información sometida a derechos de propiedad intelectual o industrial a favor de LUZ de Gestión y Medio Ambiente, S.L. LUZ de Gestión y Medio Ambiente, S.L no permite que sea duplicada, transmitida, copiada, arreglada, adaptada, distribuida, mostrada o divulgada total o parcialmente, a terceros distintos de la organización promotora de este proyecto, ni utilizada para cualquier uso distinto del de su evaluación de impacto ambiental para el que se ha preparada, sin el consentimiento previo, expreso y por escrito de LUZ de Gestión y Medio Ambiente, S.L.

12. BIBLIOGRAFÍA

- ANDERSON, R., MORRISON, M., SINCLAIR, K. & STRICKLAND, D. 1999. Studying wind energy/bird interactions: A guidance document. Metrics and methods for determining or monitoring potencial impacts on birds at existing and proposed wind energy sites. National Wind Coordinating Commitee/RESOLVE, Washington, D.C. 87 pp.
- ARROYO, B. Y GARCÍA, J. 2007. El Aguilucho cenizo y el aguilucho pálido en España. Población en 2006 y método de censo. SEO/BirdLife. Madrid.
- BALMASEDA, J. J. N. (1992). Ecologia de poblaciones del cernicalo primilla (falco naumanni) (Doctoral dissertation, Universidad de Sevilla).
- BARRIOS, L. & MARTÍ, R. 1995. Incidencia de las plantas de aerogeneradores sobre la avifauna en la comarca del campo de Gibraltar. Resumen del informe final. SEO/Birdlife.
- BARRIOS, L. & RODRIGUEZ, A. 2004. Behavioural and Environmental Correlates of Soaring-Bird Mortality at on-Shore Wind Turbines. *Journal of Applied Ecology*, 41: 72-81.
- BERNIS, F. 1980. La migración de las aves en el estrecho de Gibraltar: época posnuncial.
 Volumen I. Aves planeadoras. Cátedra de Zoología de Vertebrados. Universidad Complutense,
 Madrid.
- BIRDLIFE INTERNATIONAL. 2004. Birds in Europe. Birdlife International. Wageningen.
- BUSTAMANTE, J. & Negro, J.J. 1994. The postfledging dependence period of the Lesser Kestrel (Falco naumanni) in Southwestern Spain. Journal of Raptor Research 28, 158-163.
- CAMPIÓN, D. 2004. Respuesta de las aves de presa frente a las transformaciones de ambientes agroforestales mediterráneos: hábitats de nidificación y campeo. Tesis doctoral, Universidad Autónoma de Madrid. 206 pp.
- CARDIEL, I. E. 2006. El milano real en España. Il Censo Nacional (2004). SEO/BirdLife. Madrid.
- CHAMBERLAIN, D. E., REHFISCH, M. R., FOX, A. D., DESHOLM, M. & ANTHONY, S. J. 2006. The
 effect of avoidance rates on bird morality predictions made by wind turbine collision risk
 models. *Ibis* 148:198-202.
- CRAMP, S., Simmons, K. E. L. (Eds.) (1980). Handbook of the Birds of Europe the Middle East and North Africa. The Birds of the Western Palearctic. Vol. II. Hawks to Bustards. Oxford University Press, Oxford.
- DE LUCAS, M., JANSS, G.F.E. & FERRER, M. 2004. The Effects of a Wind Farm on Birds in a Migration Point: The Strait of Gibraltar. *Biodiversity and Conservation*, 13: 395-407.
- DE LUCAS, M., JANNS, G.F.E. & FERRER, M. 2007. *Birds and Wind Farms Risk Assessment and Mitigation*. Ed. Quercus.

- DEL MORAL, J.C. (ed.). 2009. El buitre leonado en España. Población reproductora en 2008 y método de censo. SEO/BirdLife. Madrid
- DE LUCAS, M., JANNS, G.F.E., WHITFIELD, D.P. & FERRER, M. 2008. *Collision fatality of raptors in wind farms does not depend on raptor abundance. Journal of Applied Ecology* (en prensa).
- DESHOLM, M. & KAHLERT, J. 2005. Avian Collision Risk at an Offshore Wind Farm. Biology Letters, 1: 296-298.
- DIETZ, C., HELVERSEN, O. & NILL D. 2009. Bats of Britain, Europe & Northwest Africa. A&C
 Black.
- DIRKSEN, S., WINDEN, J.V.D. & SPAANS, A.L. 1998. *Nocturnal collision risks of birds with wind turbines in tidal and semi-ofshore areas.* En: C.F. Ratto & G. Solari (Eds.): Wind Energy and Landscape, pp. 99-107. Balkema, Rotterdam, The Netherlands.
- ESCRIBANO M, M DE FRUTOS, E IGLESIAS, C MATAIX & I TORRECILLA (1991) El Paisaje.
 Ministerio de Obras Públicas y Transportes, Secretaría General Técnica, Centro de Publicaciones, Madrid, España. 117 pp.
- ERICKSO, W.P., JOHNSON, G.D., STRICKLAND, M.D., YOUNG, D.P., SERNKA, K.J. & GOOD, R.E.
 2001. Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States. Western Ecosystems Technology Inc. & National Wind Coordination Committee.
- ERICKSON, W. P., JOHNSON, G., YOUNG, D., STRICKLAND, D., GOOD, R., BOURASSA, M., BAY,
 K. & SERNKA, K. 2002. Synthesis and comparison of baseline avian and bat use, raptor nesting
 and mortality information from proposed and existing wind developments. WEST. Inc.
- FAJARDO, I., PIVIDAL, V., TRIGO, M. & JIMÉNEZ M. 1998. Habitat selection, activity peaks and strategies to avoid road mortality by the little owl Athene noctua. A new methodology on owls research. Alauda, 66: 49-60.
- FERNÁNDEZ, J. G. (2000). Dispersión premigratoria del cernícalo primilla Falco naumanni en España. Ardeola, 47(2), 197-202.
- FLAQUER, C., PUIG, X. 2012. "Els ratpenats de Catalunya. Guia de camp". Brau.
- FOWLER, J. & COHEN, L. 1999. Estadística básica en Ornitología. Ed. SEO/BirdLife.
- FRANCO, A. & Andrada, J.A. 1977. Alimentación y selección de presa en Falco naumanni.
 Ardeola 23, 137-187.
- FRUTOS TENA, Á. D. (2009). Ecología y conservación del Cernícalo Primilla durante el periodo premigratorio.

- GARCÍA, J. 2000. Dispersión premigratoria del Cernícalo Primilla Falco naumanni en España.
 Ardeola 47, 197-202.
- INAGA. (2018). Condicionado 8.A sección aerogenerador3es a instalar sistemas de detección de avifauna y anticolisión en los parques eólicos Las Majas VII. Zaragoza.
- LEKUONA, J.M. 2001. Uso del espacio por la avifauna y control de la mortalidad de aves y murciélagos en los parques eólicos de navarra durante un ciclo anual. Departamento de Medio Ambiente, Ordenación del Territorio y Vivienda del Gobierno de Navarra.
- MADROÑO, A., GONZÁLEZ, C. & ATIENZA, J. C. (Eds.) 2004. Libro Rojo de las Aves de España.
 Dirección General para la Biodiversidad-SEO/Birdlife. Madrid.
- MARTÍ, R. & DEL MORAL, J. C. (Eds.) 2003. Atlas de las aves reproductoras de España. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología. Madrid.
- MARTÍNEZ-ABRAÍN, F., TAVECCHIA, G., REGAN, H.M., JIMÉNEZ, J., SURROCA M. & ORO, D.
 2011. Effects of wind farms and food scarcity on a large scavenging bird species following an epidemic of bovine spongiform encephalopathy. Journal of Applied Ecology.
- MAY, R., Nygård, T., Falkdalen, U., Åström, J., Hamre, Ø., & Stokke, B. G. (2020). Paint it black:
 Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecology and evolution, 10(16), 8927-8935.
- OLEA, P.P. 2001b. Sobre la dispersión premigratoria del Cernícalo Primilla Falco naumanni en España. Ardeola 48, 237-241.
- SISTEMA AUTOMÁTICO DE MONITORIZACIÓN Y PROTECCIÓN DE AVES [DtBird] (s.f.).
 Plataforma Online de Análisis de Datos. https://dap.dtbird.com/
- SUÁREZ, F., HERVÁS, I. HERRANZ, J. y DEL MORAL, J.C. 2006. La ganga ibérica y la ganga ortega en España: población en 2005 y método de censo. SEO/BirdLife. Madrid.
- TELLERÍA, J. L. 1986. Manual para el censo de los vertebrados terrestres. Ed. Raices.
- URSÚA, E. & Tella, J.L. 2001. Unusual large communal roosts of Lesser Kestrel in two electric substations of Northern Spain: implications for the conservation of Spanish population, In Abstracts of the 4th Eurasian Congress on Raptors. eds J. Bustamante, G. Crema, E. Casado, J. Seoane, C. Alonso, C. Rodríguez, M. de Lucas, G. Janss, p. 188. Estación Biológica de Doñana and Raptor Research Foundation, Sevilla, Spain.
- Wellig, SD, Nusslé, S., Miltner, D., Kohle, O., Glaizot, O., Braunisch, V., ... & Arlettaz, R. (2018).
 Mitigación de los impactos negativos de las turbinas eólicas altas en los murciélagos: perfiles de actividad vertical y relaciones con la velocidad del viento. PloS uno , 13 (3), e0192493.

ANEXOS

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

ANEXO 1: CARTOGRAFÍA

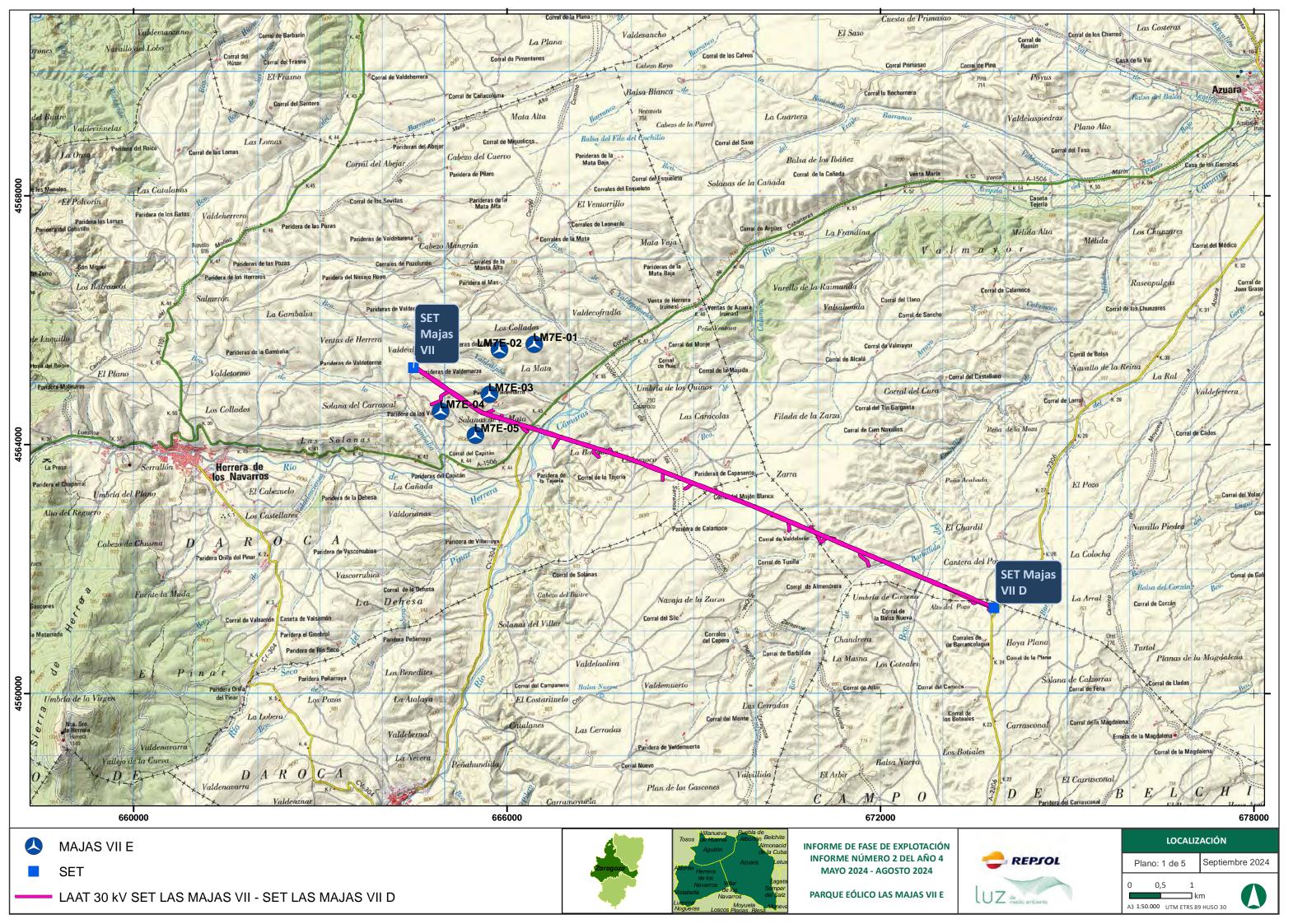
Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

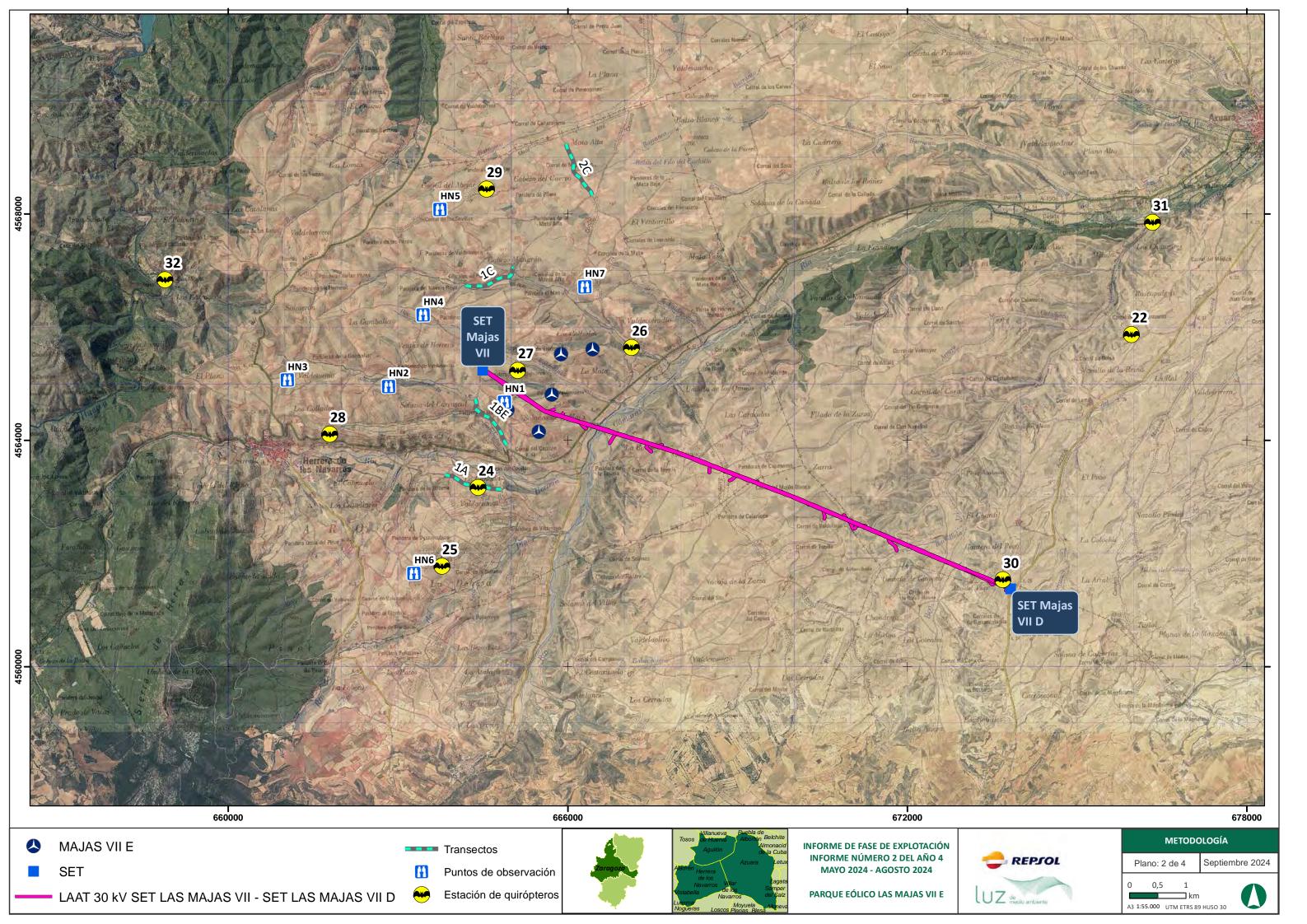
ANEXO 2: INSPECCIÓN REGISTRO DE PEQUEÑOS PRODUCTORES DE RESIDUOS

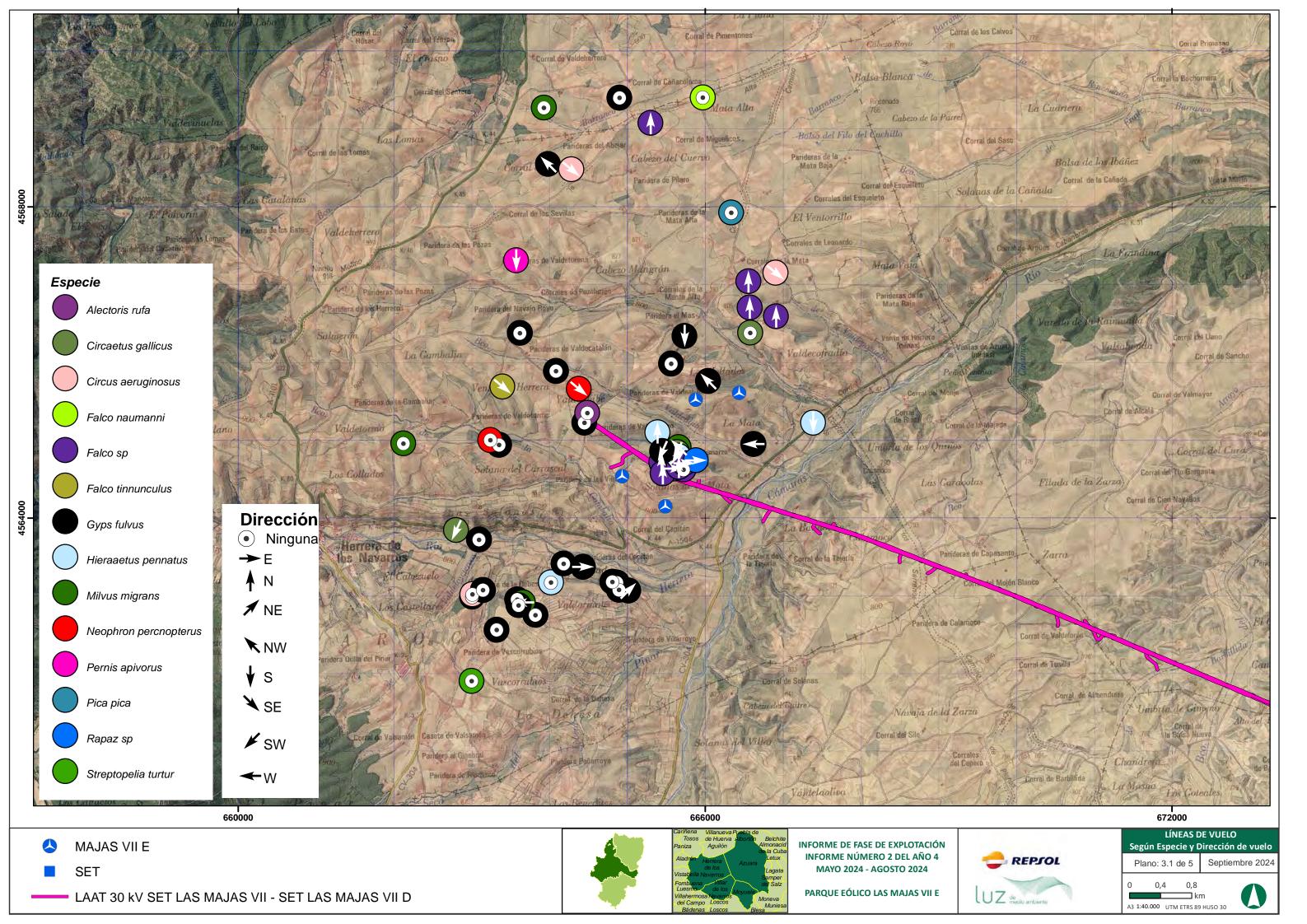
Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

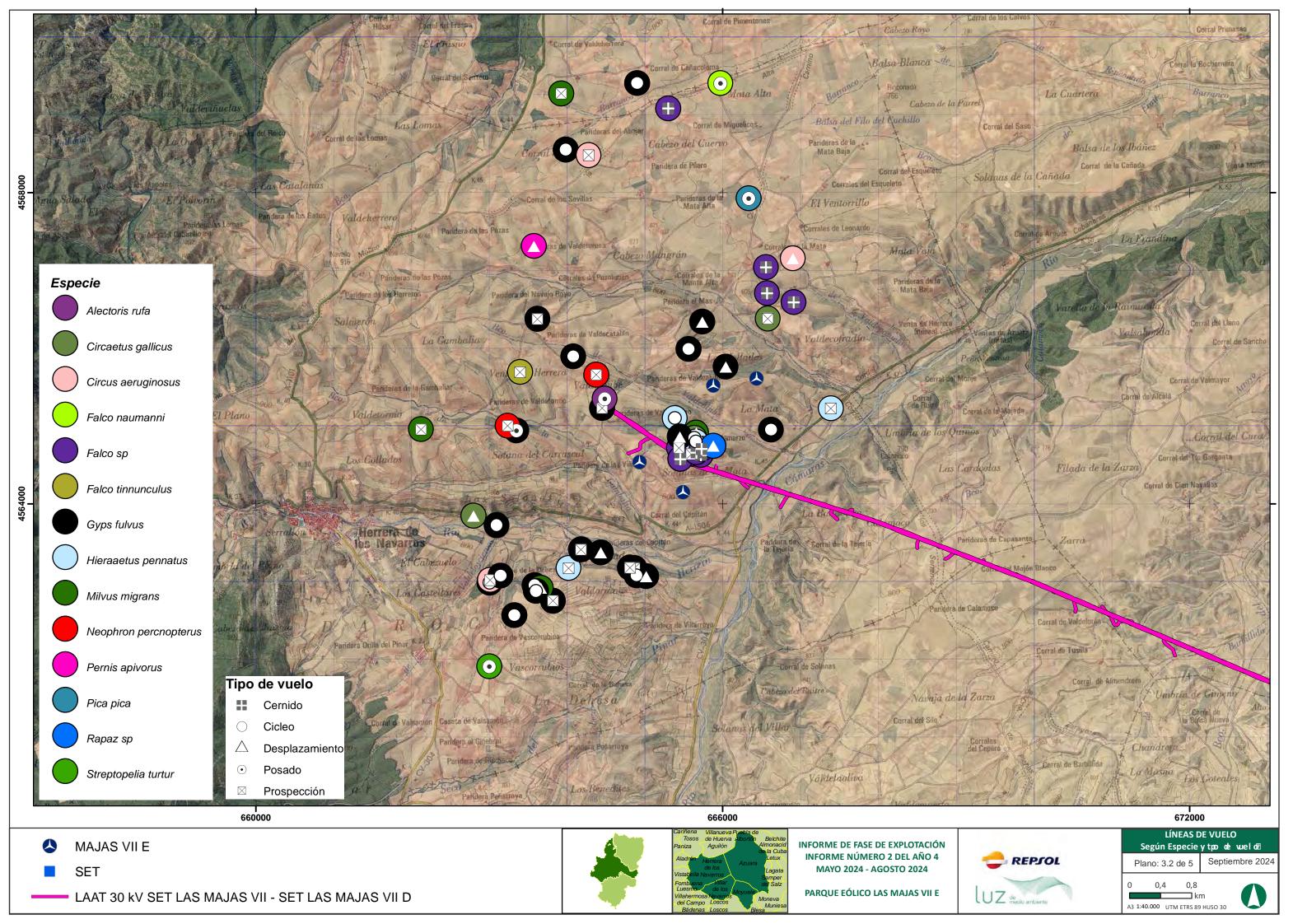
ANEXO 3: PLAN DE EMERGENCIA AMBIENTAL

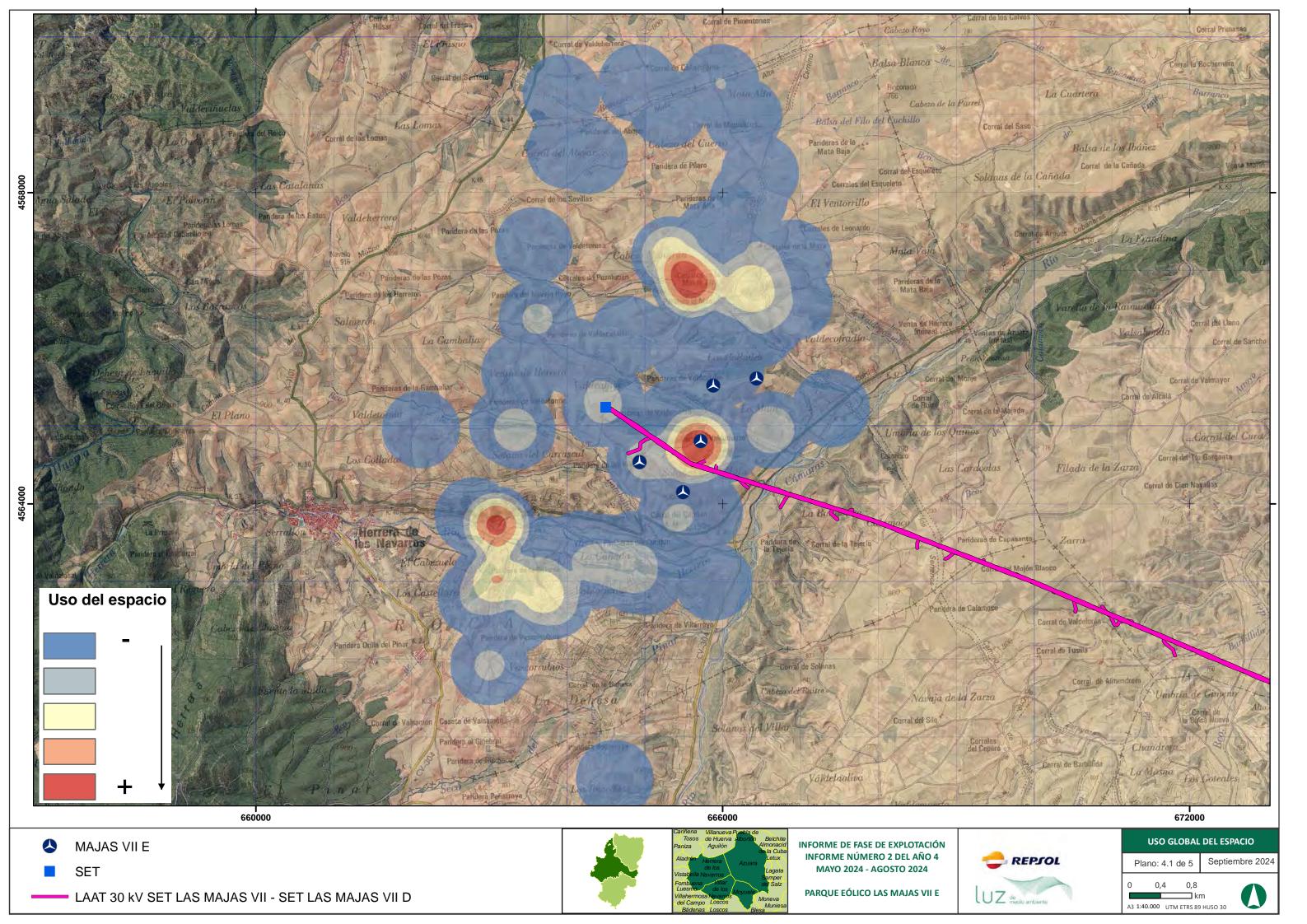
Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

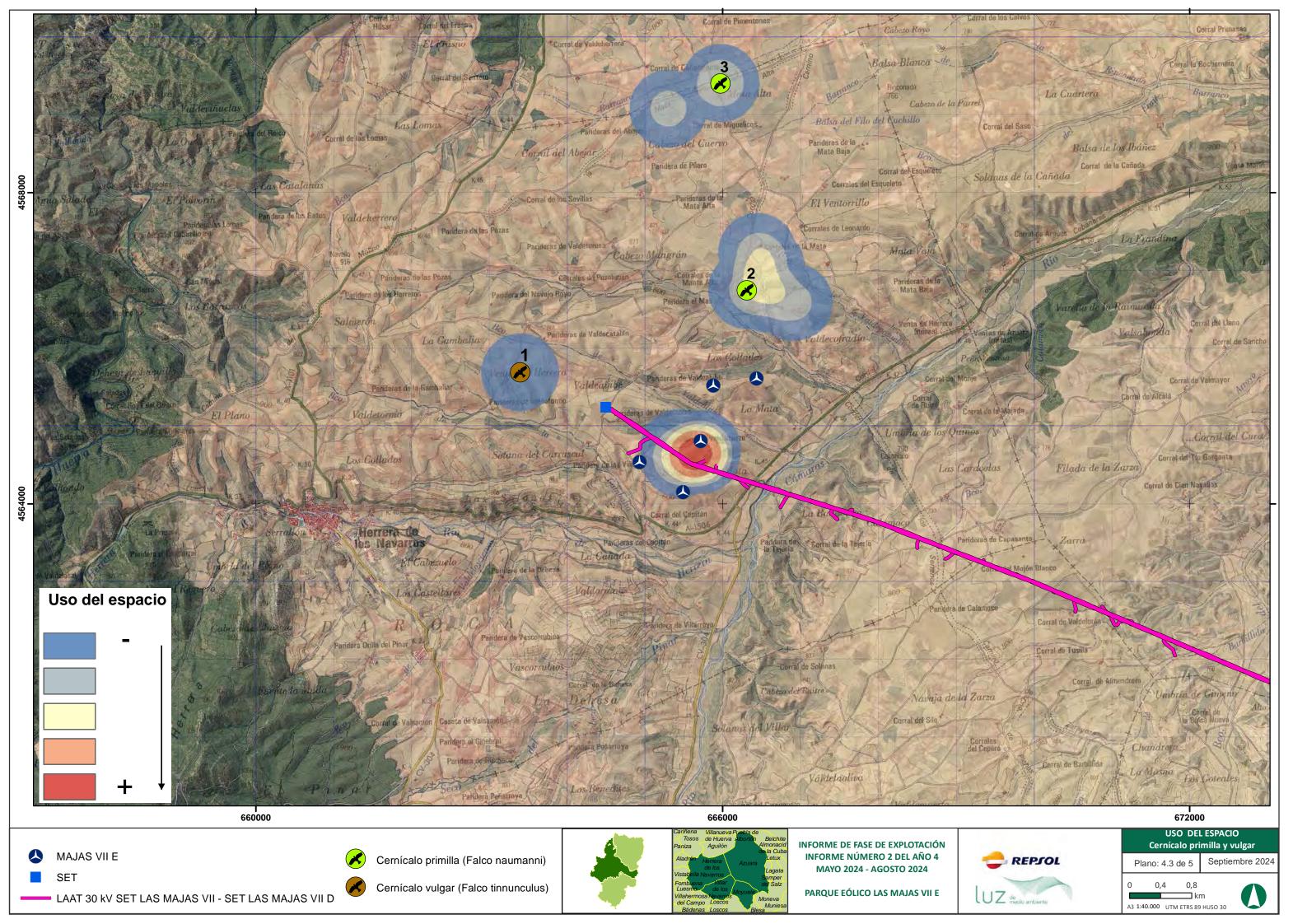


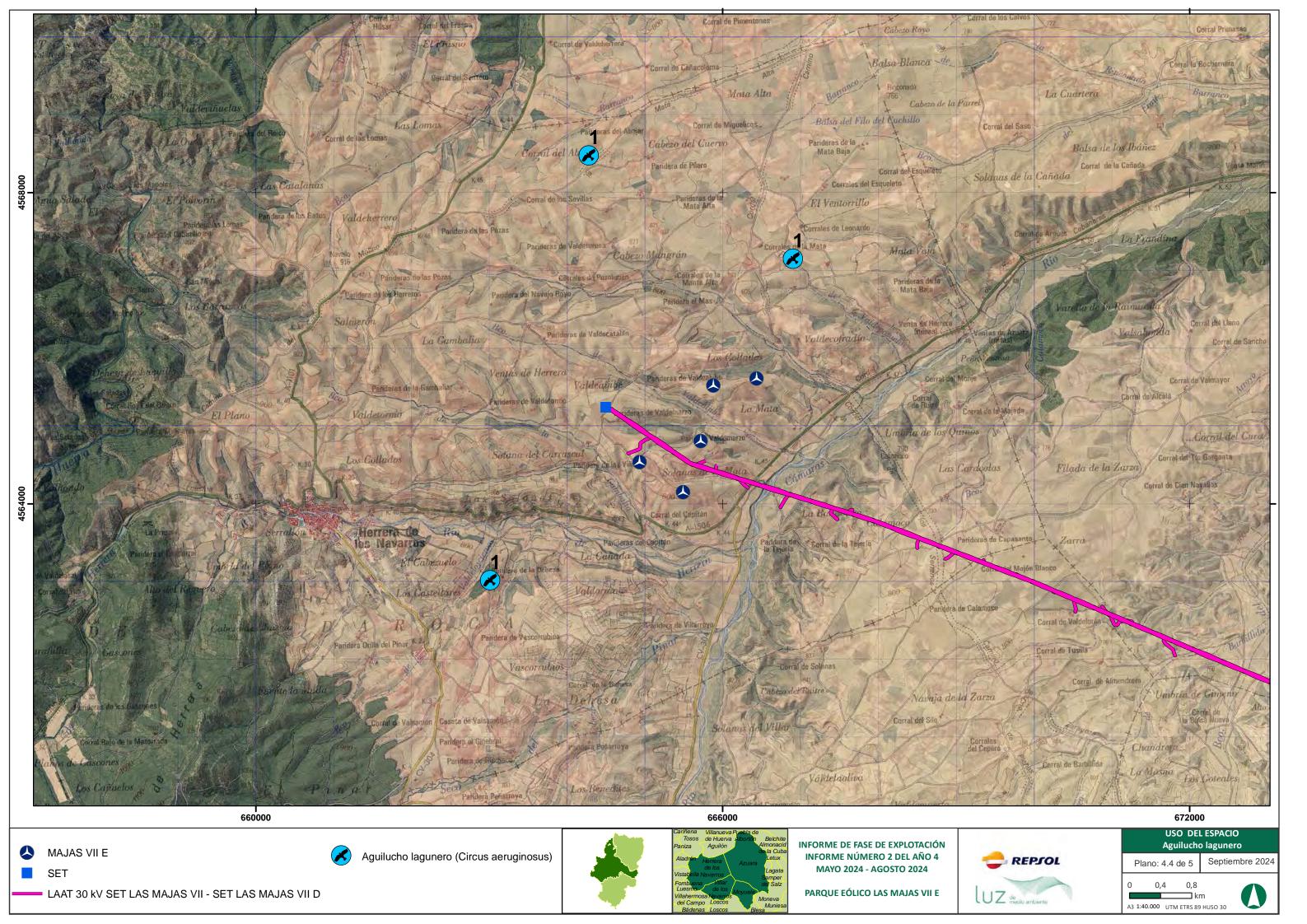

ANEXO 4: INFORME ANÁLISIS ACCIDENTAL DEL CERNÍCALO PRIMILLA (Falco naumanni)

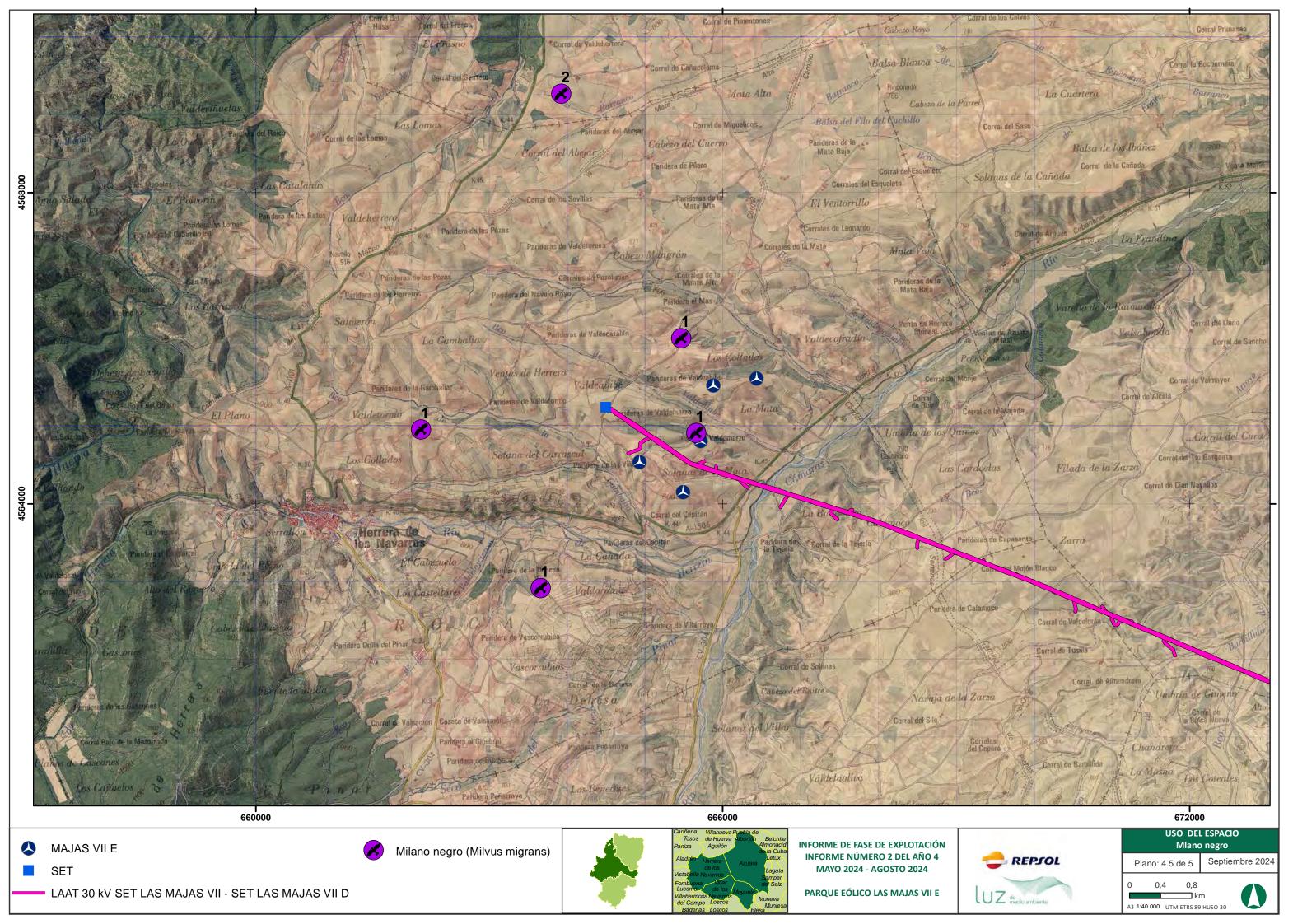

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

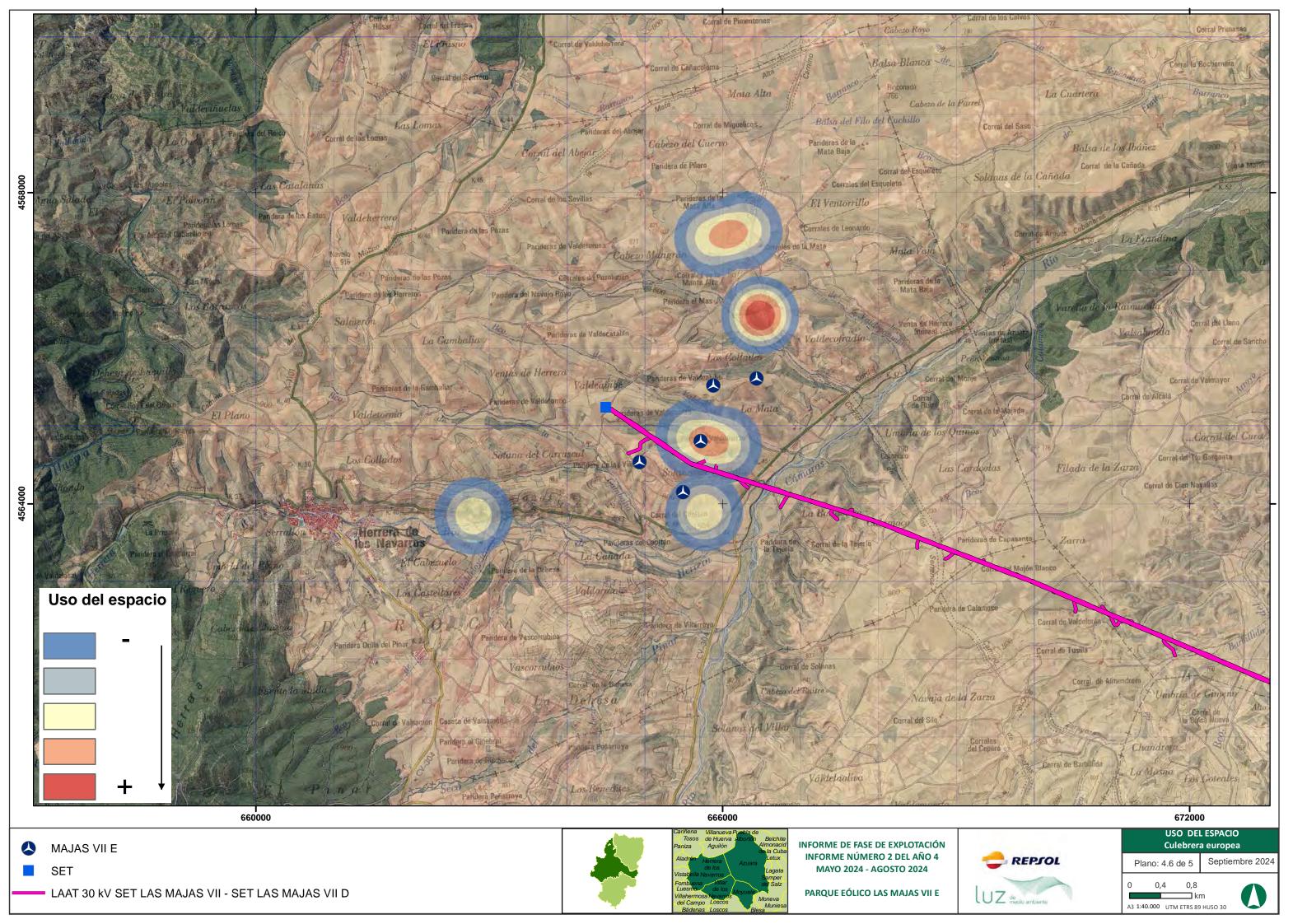


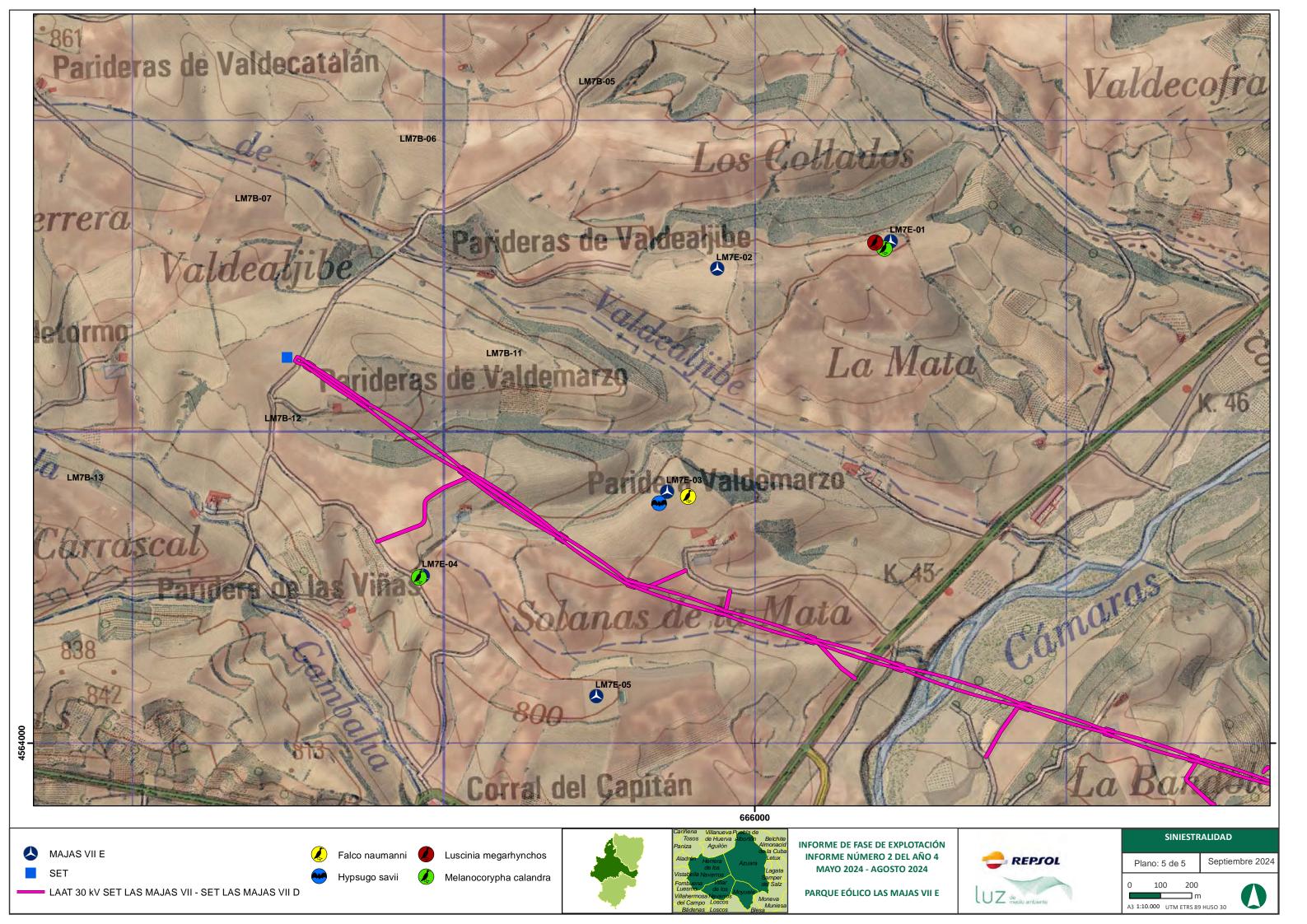

ANEXO 5: NUEVA CARTELERÍA











AÑO 2024 PRIMER INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

ANEXO 2: INSPECCIÓN REGISTRO DE PEQUEÑOS PRODUCTORES DE RESIDUOS

Resolución del Instituto Aragonés de Gestión Ambiental de fecha 22 de febrero de 2021.

Resolución del Instituto Aragonés de Gestión Ambiental por la que se inscribe en el Registro de Pequeños Productores de Residuos Peligrosos de la Comunidad Autónoma de Aragón a FUERZAS ENERGÉTICAS DEL SUR DE EUROPA VI, S.L. para su centro situado en Subestación Las Majas 7 - Polígono 44 parcela 41; 50150 Herrera de los Navarros (Zaragoza) (Nº Expte. INAGA/500303/05. 2020/10263).

VISTO el escrito presentado por FUERZAS ENERGÉTICAS DEL SUR DE EUROPA VI, S.L., con NIF B87755492 y sede social en C/ General Lacy, 23, 28045 Madrid, relativo a su comunicación previa como Pequeño Productor de Residuos Peligrosos para su centro sito en Subestación Las Majas 7 - Polígono 44 parcela 41; 50150 Herrera de los Navarros (Zaragoza).

CONSIDERANDO la normativa establecida al respecto por la Ley 22/2011, de 28 de julio, de residuos y suelos contaminados y el Decreto 133/2013, de 23 de julio, del Gobierno de Aragón, de simplificación y adaptación a la normativa vigente de procedimientos administrativos en materia de medio ambiente.

CONSIDERANDO el informe favorable de fecha 22 de febrero de 2021 del Área III del Instituto Aragonés de Gestión Ambiental.

De conformidad con lo establecido en la Ley 39/2015, de 1 de octubre, del Procedimiento Administrativo Común de las Administraciones Públicas y la Ley 10/2013, de 19 de diciembre, del Instituto Aragonés de Gestión Ambiental.

Por la presente,

SE RESUELVE

Inscribir a FUERZAS ENERGÉTICAS DEL SUR DE EUROPA VI, S.L. con NIF B87755492 en el Registro de Pequeños Productores de Residuos Peligrosos de la Comunidad Autónoma de Aragón para su centro sito en Subestación las Majas 7 - Polígono. 44 parcela 41; 50150 Herrera de los Navarros (Zaragoza), cuyo CNAE 2009 es 3518 - Producción de energía eléctrica de origen eólico, de coordenadas geográficas UTM(ETRS89) Huso 30 X: 664497 Y: 4565241 asignándole el número de inscripción **AR/PP – 13403.**

La inscripción se concede para los residuos y cantidades declarados en la comunicación previa y que se señalan en el anexo de la presente Resolución. Cualquier cambio o modificación que se produzca en los datos aportados deberá ser comunicada para proceder a la revisión del expediente.

FUERZAS ENERGÉTICAS DEL SUR DE EUROPA VI, S.L. deberá cumplir con todas las prescripciones establecidas para los Pequeños Productores de Residuos Peligrosos en la Ley 22/2011, de 28 de julio, de residuos y suelos contaminados, en el Real Decreto 833/1988, de 20 de julio, por el que se aprueba el Reglamento para la ejecución de la Ley 20/1986, básica de residuos tóxicos y peligrosos y en la demás normativa que les sea de aplicación.

<u>ANEXO</u>

RESIDUO	LER	t/año	código HP(1)
Emulsiones cloradas	130104	0,520	HP6/HP14
Aceites minerales no clorados de motor, de	130205	0,520	HP6/HP14
transmisión mecánica y lubricantes			
Envases que contienen restos de sustancias	150110	0,871	HP5
peligrosas o están contaminados por ellas			
Envases metálicos, incluidos los recipientes a	150111	0,156	HP3/HP12
presión vacíos, que contienen una matriz sólida y			
porosa peligrosa (por ejemplo, amianto)			
Absorbentes, materiales de filtración (incluidos los	150202	0,195	HP5/HP3/HP14
filtros de aceite no especificados en otra categoría),			
trapos de limpieza y ropas protectoras			
contaminados por sustancias peligrosas			
Filtros de aceite	160107	0,026	HP5/HP14
Baterías de plomo	160601	0,026	HP8/HP14
Tierra y piedras que contienen sustancias	170503	0,130	HP5
peligrosas			
Grandes electrodomésticos con aceite en circuitos	16021313	0,052	HP5/HP14
o condensadores. Profesional			
Lámparas de descarga, no LED. Lámparas	20012131	0,007	HP6/HP14
Fluorescentes. Doméstico y/o profesional			

⁽¹⁾ Características de los residuos según el Reglamento UE nº 1357/2014 de la Comisión, de 18 de diciembre de 2014, por el que se sustituye el anexo III de la Directiva 2008/98/CE del Parlamento Europeo y del Consejo, sobre los residuos y por la que se derogan determinadas Directivas.

Contra la presente Resolución, que no pone fin a la vía administrativa, de conformidad con lo establecido en los artículos 112 y 121 de la Ley 39/2015, de 1 de octubre, del Procedimiento Administrativo Común de las Administraciones Públicas, y de acuerdo con lo dispuesto en el artículo 8 de la Ley 10/2013, de 19 de diciembre, del Instituto Aragonés de Gestión Ambiental, podrá interponerse recurso de alzada, en el plazo de un mes, ante el Sr. Presidente del instituto Aragonés de Gestión Ambiental, sin perjuicio de cualquier otro recurso que, en su caso, pudiera interponerse.

JESUS LOBERA MARIEL

EL DIRECTOR DEL INSTITUTO ARAGONÉS DE GESTIÓN AMBIENTAL

Documento firmado electrónicamente verificable en: www.aragon.es/inaga/verificadordocumentos

Código de verificación: CSVL0-714IZ-4KCB8-FHREG

AÑO 2024 PRIMER INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

ANEXO 3: PLAN DE EMERGENCIA AMBIENTAL

SMA-DC006-6: Plan de Emergencia Ambiental.

1.		Dbjeto	2
2.		Alcance	
3.		Definiciones.	2
4.	A	Aspectos ambientales de emergencia	2
5.		Método General de Actuación	
ļ	5.1.	. Actuación en caso de derrame químico	3
	5.2	. Actuación en caso de afección a fauna	4
	5.3	. Actuación en caso de afección a la vegetación	5
	5.4	. Actuación en caso de afección al patrimonio	6
ļ	5.5	. Actuación en caso de afección al medio hídrico	7
	5.6	. Actuación en caso de emisiones de gases fluorados	8
	5.7	_	
ļ	5.8		
6.	- Ii	nforme de Investigación de Incidentes Ambientales.	1

REPJOL	PLAN DE EMERGENCIA AMBIENTAL	
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

1. Objeto.

El presente plan de trabajo tiene como objetivo la definición de la forma en que se controlarán las emergencias de naturaleza ambiental en los proyectos en fase de O&M de REPSOL Renovables.

Este Plan de Emergencia Ambiental constituye una línea base de actuación que deberá ser complementada con los procedimientos y planes específicos de cada proyecto, según proceda. Del mismo modo, no excluye del cumplimiento de la legislación ambiental aplicable en cada momento y en función del país/área donde se ubique el centro de trabajo.

Los procedimientos definidos se ejecutarán en consonancia con lo indicado en los Planes de Autoprotección de los proyectos, así como con lo definido en el procedimiento SMA-PR002 de Gestión de Incidentes.

2. Alcance.

Este plan será de aplicación en todos los proyectos en fase de O&M de REPSOL Renovables, tanto para el personal propio como el subcontratado.

3. Definiciones.

- INCIDENCIA AMBIENTAL: situación no deseada con implicación o potencial implicación medioambiental, que puede ser controlada internamente y no supera los límites de la propiedad del centro de trabajo.
- EMERGENCIA AMBIENTAL: Situación no deseada con implicación o potencial implicación medioambiental que supera los límites de la propiedad del centro de trabajo o para el cual los medios humanos y materiales con los que se cuenta no son suficientes.

4. Aspectos ambientales de emergencia.

A través del estudio de las implicaciones ambientales de la actividad desarrollada por la compañía, así como de los aspectos ambientales identificados se han definido los siguientes riesgos medioambientales asociados:

- Derrame Químico.
- Afección a Fauna.
- Afección a Vegetación.
- Afección a Patrimonio.
- Afección a Medio Hídrico, afección a Redes de Drenaje.
- Emisión de gases fluorados o afección a capa de ozono.
- Incendio/Explosión.
- Rotura de fosa séptica o sistema de depuración.
- Trasmisión de Legionella.

Para cada una de estas situaciones se presenta de forma esquemática el modo general de actuación, con los medios humanos y materiales necesarios.

REPSOL	PLAN DE EMERGENCIA AMBIENTAL	
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5. Método General de Actuación.

A continuación, se describen las pautas de actuación en modo de fichas para cada una de las situaciones identificadas:

5.1. Actuación en caso de derrame químico FASES DE ACTUACIÓN			
Se deberá garantizar	en todo momento la correcta gestión de los residuos y productos químicos existentes en		
obra; así como de los	s residuos (peligrosos, etc.) generados como consecuencia de las tareas realizadas.		
Aspectos	Generación de residuos Impactos Posible contaminación suelos /		
	aguas Comunicación inmediata a guarrior infórquiso y paragral de REDSOL		
	 Comunicación inmediata a superior jerárquico y personal de REPSOL. Comunicar cualquier derrame al Departamento de SMA. 		
Comunicación Comunicar cualquier denante al Departamento de Sina. Comunicar a las contratas de mantenimiento correctivo en función del derrar			
	Mantenimiento eléctrico: Fuga de aceite en el transformador.		
	 Mantenimiento mecánico: Fuga de aceite multiplicadoras. 		
	1. Valorar y proceder a la consignación de energías y equipos que puedan verse		
	afectados por el derrame.		
	 Delimitar la zona del derrame colocando barreras, material absorbente, etc. para evitar que el vertido de producto contaminado pase a la red de saneamiento, a suelos 		
	permeables y cursos de agua:		
	 En caso de que el vertido no se pueda contener y alcance redes o cursos de agua, 		
	el Jefe de la Emergencia alertará a las autoridades avisando, en la medida de lo		
	posible, del origen y composición de las aguas del vertido y su carga contaminante.		
	 En caso de que no sea posible evitar la afección de suelos, dirigir el vertido hacia el suelo con la siguiente prioridad: 1-Suelo cementado, 2-Suelo compactado, 3-Suelo 		
	arcilloso, 4-Suelo natural y 5- Suelo permeable.		
	Consultar antes de realizar cualquier tarea las fichas de seguridad del producto que		
	deberán encontrarse disponibles en la subestación.		
	4. Los restos líquidos de producto químico se retirarán mediante material filtrante. Los		
restos de aceite que se encuentran en la cubeta del transformador serán r			
Intervención	gestor autorizado mediante camión cuba o bombeo a depósitos. 5. Para la retirada de material contaminado se utilizarán equipos de protección individual		
	adecuados a las características de los productos o sustancias involucrados. Estos		
	equipos de protección una vez finalizada su utilización serán gestionados		
	adecuadamente.		
	Si el derrame es por accidente de vehículo, apagar el motor y quitar la batería.		
	 Contener el derrame haciendo una pequeña barrera con tierra o sepiolita. Si existe una cuneta, y la fuga es lenta, dirigir el líquido hacia la cuneta y hacer 		
	pequeños diques que lo contengan. Impermeabilizar el canal y los diques con el		
	plástico. Echar un poco de tierra sobre el plástico.		
	Retirar el material absorbente y la tierra contaminada y gestionarlo como residuo		
	peligroso.		
	IMPORTANTE: El personal que intervenga deberá tener en cuenta las siguientes precauciones:		
	 Avisar a los Servicios de Ayuda Exterior si la situación lo requiere. 		
	Uso EPIS: de acuerdo a lo definido en la Ficha de Seguridad.		
	1. Recoger los restos de productos, clasificarlos, proceder a su confinamiento		
	recogiéndolos en contenedores adecuados y ponerse en contacto con los gestores		
	autorizados para su cesión.		
	 Descontaminar los equipos después de su uso. En caso de contaminación de suelo se efectuará un estudio de caracterización de la 		
Fin de la emergencia	penetración de las sustancias derramadas, analizando posibles soluciones de		
	tratamiento y descontaminación.		
	4. Si no es posible abordar este trabajo se estudiará la contratación de servicios		
	profesionales externos.		
	5. Elaborar el Informe de Investigación de Incidentes Ambientales.		

REPJOL	PLAN DE EMERGENCIA	AMBIENTAL
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5.1. Actuación en caso de derrame químico

En todo momento se deberán tener en cuenta las pautas y recomendaciones referidas en las fichas de datos de seguridad de los productos, que deberán encontrarse disponibles en la central, especialmente en lo referente a:

- EPIS.
- DERRAME.
- PRIMEROS AUXILIOS.
- MÉTODOS DE EXTINCIÓN.

5.2. Actuación en caso de afección a fauna				
	FASES DE ACTUACIÓN			
Cualquier actuación con riesgo de afectación a la fauna se gestionará de forma que se minimicen los riesgos para el personal implicado y priorizando la recuperación de los animales heridos conforme a las pautas definidas por la administración competente.				
Aspectos	Afectación a fauna	Impactos	Posible afectación a fauna.	
Comunicación	 Comunicar cualquier afección a la fauna al Departamento de SMA. Comunicar a las empresas asociadas encargadas del seguimiento medioambiental de la instalación. 			

REPJOL	PLAN DE EMERGENCIA	AMBIENTAL
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5.2. Actuación	n en caso de afección a fauna
5.2. Actuación	Ante todo, lo primero es cerciorarnos de que el animal realmente necesita de nuestra ayuda por encontrase herido o fuera de su hábitat natural. En caso de afectación a fauna, se procederá a actuar de la siguiente manera: 1. Valorar el alcance de la emergencia. Para ello en ningún caso se tocará el animal. 2. Determinar, si es posible, especie y número de ejemplares afectados. 3. Comprobar el estado del animal: herido, muerto o desconocido. 3.1. En caso de estar muerto: a) Retirar, si es necesario, unos metros para poder realizar otras actividades de mantenimiento en paralelo. b) Cubrir con una lona o plástico y poner piedras para sujetarlo. 3.2. En caso de estar herido: a) Coordinarse con el Dpto. de Medio Ambiente u administración competente lo más rápido posible para garantizar su atención y recuperación en la medida de los posible.
Intervención	 b) Cumplir pautas y órdenes recibidas por la administración competente hasta su llegada al site. Evitar en todo momento la manipulación de los animales y/o insectos, reptiles, etc. afectados, de los que se desconozca su potencial venenoso. En caso de que sea estrictamente necesaria: Hacer uso de ropa y equipos de protección adecuados en caso de que sea necesaria la manipulación del animal por motivos de seguridad. No intentar curar al animal si no tienes conocimientos. En la recogida y el manejo debemos ser extremadamente cautelosos, evitando ser dañados y procurando no producirle daños al animal. Introducir al animal en una caja de cartón o similar para su transporte, en la cual previamente se deben hacer agujeros para que pueda respirar. Dejarlo en un lugar tranquilo en penumbra, totalmente alejado de molestias y ruidos. Lavar adecuadamente toda la ropa utilizada en dicha manipulación y desechar adecuadamente los equipos temporales usados (guantes, plásticos, etc.).
	 Nunca intentar forzar a comer ni a beber. No intentar curarlo. Ante presencia de posibles animales heridos que puedan generar peligro para los trabajadores, refugiarse en el vehículo o edificio más cercano y evitar la exposición o acercamiento. Realizar fotografías al animal que puedan servir como apoyo en la identificación del mismo por parte de los departamentos medioambientales competentes. En caso de mordedura o picadura, seguir las pautas definidas en el Plan de Emergencia.
Fin de la emergencia	Una vez gestionada la emergencia, se cumplimentará el Informe de Investigación de Incidentes Ambientales de forma coordinada con el departamento de SMA, quién validará este informe para su registro y correcta aplicación de medidas preventivas según proceda.

5.3. Actuación en caso de afección a la vegetación FASES DE ACTUACIÓN Cualquier actuación con riesgo de afectación a vegetación se gestionará de forma que se minimicen los riesgos para el personal implicado y priorizando la recuperación entorno medioambiental conforme a las pautas definidas por la administración competente. Aspectos Afectación a flora Impactos Posible afectación a flora.

REPSOL	PLAN DE EMERGENCIA	A AMBIENTAL
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5.3. Actuación	en caso de afección a la vegetación
	Comunicar cualquier afección a la flora al Departamento de SMA.
Comunicación	Comunicar a la administración competente en función del país/área aplicable.
	Comunicar a las empresas asociadas encargadas del seguimiento medioambiental de la instalación.
	En caso de afección a flora, se procederá a actuar de la siguiente manera:
En caso de afección a flora, se procederá a actuar de la siguiente manera: 1. Valorar el alcance de la emergencia. Para ello tendrá en cuenta: a) El tipo de vegetación afectada (si se conoce). Al menos, especifica de arbustivas o arbóreas. b) Estimación de superficie / ejemplares afectados. c) Capacidad de respuesta y tiempo límite (según los medios que ese momento y el tiempo que nos puede llevar actuar, además de estim de la situación). 2. Aviso de la persona que detecte la afección al Jefe de Emergencia y depa SMA. 3. Avisar a los medios exteriores y administraciones competentes según aplicable, esperando y cumpliendo las pautas de actuación recibidas. Coordinación con los medios externos.	
	Si la emergencia se puede controlar internamente la secuencia de actuación será: 1. Localizar zona afectada. 2. Balizar y/o señalar la zona para impedir que se extienda la afección e impedir su acceso si es necesario.
Fin de la emergencia	Una vez gestionada la emergencia, se cumplimentará el Informe de Investigación de Incidentes Ambientales de forma coordinada con el departamento de SMA, quién validará este informe para su registro y correcta aplicación de medidas preventivas según proceda.

5.4. Actuación en caso de afección al patrimonio			
FASES DE ACTUACIÓN			
Cualquier actuación de riesgo y/o emergencia se gestionará de forma que se minimicen los riesgos para el personal implicado y priorizando el respeto por el patrimonio cultural conforme a las pautas definidas por la administración competente.			
Aspectos	Afectación al patrimonio.	Impactos	Posible afectación al patrimonio.
	 Comunicar cualquier afección al patrimonio al Departamento de SMA. Comunicar a la administración competente en función del país/área aplicable. 		

REPJOL	PLAN DE EMERGENCIA AMBIENTAL	
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5.4. Actuación	en caso de afección al patrimonio
Intervención	 En caso de afección patrimonial a restos arqueológicos, se procederá a actuar de la siguiente manera: Valorar el alcance de la emergencia. Para ello tendrá en cuenta: a) El tipo de resto encontrado (si se conoce). b) Capacidad de respuesta y tiempo límite (según los medios que tengamos en ese momento y el tiempo que nos puede llevar actuar, además de estimar el avance de la situación). Aviso de la persona que detecte la afección al Jefe de Emergencia y al departamento de SMA. Avisar a los medios exteriores y administraciones competentes según país y área aplicable, esperando y cumpliendo las pautas de actuación recibidas. Garantizar la coordinación con los medios externos. Si la emergencia se puede controlar internamente la secuencia de actuación será: Localizar zona afectada. Inspeccionar posibles puntos de riesgo del área afectada. Balizar y/o señalar la zona para impedir que se extienda la afección e impedir su acceso si es necesario.
Fin de la emergencia	Una vez gestionada la emergencia, se cumplimentará el Informe de Investigación de Incidentes Ambientales de forma coordinada con el departamento de SMA, quién validará este informe para su registro y correcta aplicación de medidas preventivas según proceda.

5.5. Actuación en caso de afección al medio hídrico			
FASES DE ACTUACIÓN			
Cualquier actuación con riesgo de afectación a vegetación se gestionará de forma que se minimicen los riesgos para el personal implicado y priorizando la recuperación entorno medioambiental conforme a las pautas definidas por la administración competente.			
Aspectos	Afectación al agua. Vertido de lodos.	Impactos	Contaminación cursos de agua. Generación de residuos. Contaminación de suelos
Comunicación	Comunicar a la administrac	Comunicar a la administración competente en función del país/área aplicable.	
	 Comunicar a las empresas asociadas encargadas del seguimiento medioambiental la instalación y/o mantenimiento de los sistemas de depuración/fosas. 		

REPJOL	PLAN DE EMERGENCIA	AMBIENTAL
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5.5. Actuación	en caso de afección al medio hídrico
	En caso de afección al medio hídrico, con especial énfasis en la red de drenaje de la instalación, se procederá a actuar de la siguiente manera:
	Valorar el alcance de la emergencia. Para ello tendrá en cuenta:
	 a) El tipo de afección (cambio de curso de aguas, colmatación de cunetas, ruptura de pasos de agua, subida del nivel freático, etc.). b) Capacidad de respuesta y tiempo límite (según los medios que tengamos en ese momento y el tiempo que nos puede llevar actuar, además de estimar el avance de la situación).
Intervención	 Aviso de la persona que detecte la afección al Jefe de Emergencia y al Departamento de SMA. Avisar a los medios exteriores y administraciones competentes según país y área aplicable, esperando y cumpliendo las pautas de actuación recibidas. Garantizar la coordinación con los medios externos.
	Si la emergencia se puede controlar internamente la secuencia de actuación será:
	 Localizar zona afectada. Inspeccionar posibles puntos de riesgo del área afectada. Balizar y/o señalar la zona para impedir que se extienda la afección e impedir su acceso si es necesario.
	En caso de rotura de fosa séptica y/o medios de depuración:
	Suspender descargas a fosas sépticas, cerrando el suministro de agua y cancelando de manera temporal las instalaciones sanitarias
	 Solicitar el servicio urgente al proveedor de fosas sépticas para la extracción de agua residual y mitigación de derrame.
Fin de la emergencia	Una vez gestionada la emergencia, se cumplimentará el Informe de Investigación de Incidentes Ambientales de forma coordinada con el departamento de SMA, quién validará este informe para su registro y correcta aplicación de medidas preventivas según proceda.

5.6. Actuación en caso de emisiones de gases fluorados				
FASES DE ACTUACIÓN				
Cualquier emergencia se gestionará de forma que se minimicen los riesgos para el personal implicado y priorizando la recuperación entorno medioambiental conforme a las pautas definidas por la administración competente.				
Aspectos	Generación de emisiones	Impactos	Alteración calidad del aire	
Comunicación	 Comunicar al Departamento de SMA. Comunicar a la administración competente en función del país/área aplicable. Comunicar a las empresas asociadas encargadas del seguimiento medioambiental de la instalación. Contactar con la empresa de mantenimiento de los sistemas afectados. 			

REPJOL	PLAN DE EMERGENCIA AMBIENTAL	
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5.6. Actuación	en caso de emisiones de gases fluorados	
	Cerrar el equipo, intentando cortar la fuga	
	Comunicar a una empresa mantenedora el incidente ocurrido	
	Asegurar que la empresa mantenedora realiza la reparación de la fuga y determina la causa de la fuga para evitar que se repita.	
Intervención	 En caso de detectar fuga de SF6, abandonar inmediatamente la base del aerogenerador y ventilar. Verificar periódicamente y previamente al trabajo en la turbina la no existencia de fugas de SF6. 	
	 Aviso de la persona que detecte la afección al Jefe de Emergencia y al Departamento de SMA. Avisar a los medios exteriores y administraciones competentes según país y área aplicable, esperando y cumpliendo las pautas de actuación recibidas. Garantizar la coordinación con los medios externos. 	
Fin de la emergencia	Una vez gestionada la emergencia, se cumplimentará el Informe de Investigación de Incidentes Ambientales de forma coordinada con el departamento de SMA, quién validará este informe para su registro y correcta aplicación de medidas preventivas según proceda.	

5.7. Actuación en caso de incendio y/o explosión				
FASES DE ACTUACIÓN				
Cualquier emergencia se gestionará de forma que se minimicen los riesgos para el personal implicado y priorizando la recuperación entorno medioambiental conforme a las pautas definidas por la administración competente.				
	•	ción entorno medioambienta	I conforme a las pa	utas definidas por la administración

REPJOL	PLAN DE EMERGENCIA AMBIENTAL	
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5.7. Actuación	en caso de incendio y/o explosión	
Comunicación	 Comunicar al Departamento de SMA. Comunicar a la administración competente en función del país/área aplicable. Seguir flujograma de comunicación y pautas de actuación definidas en el Plan de Emergencia. 	
Intervención	La secuencia de actuación ante incendio y/o explosión vendrá definida en los planes de Emergencia específicos de cada centro, a continuación, se describen las pautas de intervención desde el punto de vista ambiental (generación de residuos y/o emisiones a consecuencia de un incendio o explosión). Una vez extinguido el incendio: 1. Delimitar la zona afectada colocando barreras, material absorbente, etc. para evitar que los residuos generados (cenizas, etc.) pasen a la red de saneamiento, a suelos permeables y cursos de agua: • En caso de que el vertido no se pueda contener y alcance redes o cursos de agua, el J.E. alertará a las autoridades avisando, en la medida de lo posible, del origen y composición de las aguas del vertido y su carga contaminante. • En caso de que no sea posible evitar la afección de suelos, dirigir el vertido hacia el suelo con la siguiente prioridad: 1-Suelo cementado, 2-Suelo compactado, 3-Suelo arcilloso, 4-Suelo natural y 5- Suelo permeable. 2. Identificar en la medida de lo posible los productos combustibles afectados por el incendio/explosión, con el objeto de mantener controladas las fichas de seguridad y/o características físicas de los mismos. 3. Los restos líquidos se retirarán mediante material filtrante. Los restos de aceite serán retirados por gestor autorizado mediante camión cuba o bombeo a depósitos. 4. Para la retirada de material contaminado se utilizarán equipos de protección individual adecuados a las características de los productos o sustancias involucrados. Estos equipos de protección una vez finalizada su utilización serán gestionados adecuadamente.	
	 Avisar a los Servicios de Ayuda Exterior si la situación lo requiere. Uso EPIS: de acuerdo a lo definido en la Ficha de Seguridad. No lavar los residuos. Gestionar adecuadamente los polvos químicos de extinción. Una vez gestionada la emergencia, se cumplimentará el Informe de Investigación de Incidentes Ambientales de forma coordinada con el departamento de SMA, quién validará 	
Fin de la emergencia	 Recoger los restos de productos, clasificarlos, proceder a su confinamiento, recogiéndolos en contenedores adecuados y ponerse en contacto con los gestores autorizados para su cesión. Descontaminar los equipos después de su uso. En caso de contaminación de suelo se efectuará un estudio de caracterización de la penetración de las sustancias derramadas, analizando posibles soluciones de tratamiento y descontaminación. Si no es posible abordar este trabajo se estudiará la contratación de servicios profesionales externos. 	

5.8. Actuación en caso de transmisión de legionella FASES DE ACTUACIÓN Cualquier emergencia se gestionará de forma que se minimicen los riesgos para el personal implicado y priorizando la recuperación entorno medioambiental conforme a las pautas definidas por la administración competente. Aspectos Generación de emisiones Impactos Alteración calidad del aire

REPJOL	PLAN DE EMERGENCIA	AMBIENTAL
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

5.8. Actuación	en caso de transmisión de legionella		
	Comunicar al Departamento de SMA.		
Comunicación	Comunicar a la administración competente en función del país/área aplicable.		
	Comunicar a las empresas asociadas encargadas del seguimiento medioambiental de la instalación.		
	Contactar con la empresa de mantenimiento de los sistemas afectados.		
	Tomar las medidas de protección personal adecuadas para trabajar en la zona		
	Limpieza y desinfección para eliminar la contaminación por la bacteria:		
	Contactar con la empresa de mantenimiento de los sistemas de climatización y seguir sus pautas de actuación:		
Intervención	Desinfección: el tratamiento elegido deberá interferir lo menos posible con el funcionamiento habitual del centro en el que se ubique la instalación afectada. Este tratamiento consta de dos fases: un primer tratamiento de choque seguido de un tratamiento continuado, que se llevará a cabo de acuerdo con lo establecido en el anexo 4 del Real Decreto 865/2003 y/o normativa aplicable según país/área.		
	En caso que se hayan detectado defectos en la instalación, realizar las reformas estructurales para corregirlos en el plazo que se designe la inspección.		
	 Paralización total o parcial de la instalación ante la presencia de casos o brotes, instalaciones muy deficientes, contaminadas por Legionella, obsoletas, o con un mantenimiento defectuoso hasta que se corrijan los defectos observados o bien su cierre definitivo. 		
	Realizar una nueva toma de muestras pasados 15 días después de la aplicación del tratamiento, para comprobar la eficacia de las medidas aplicadas.		
	Solicitar a la autoridad sanitaria competente la autorización para la puesta en marcha de la instalación.		
Fin de la emergencia	Una vez gestionada la emergencia, se cumplimentará el Informe de Investigación de Incidentes Ambientales de forma coordinada con el departamento de SMA, quién validará este informe para su registro y correcta aplicación de medidas preventivas según proceda.		

REPSOL	PLAN DE EMERGENCIA AMBIENTAL	
Ámbito	Repsol Renovables	Código: SMA-DC006-6
Propietario	¡Error! Nombre desconocido de propiedad de documento.	Revisión: 1

6. Informe de Investigación de Incidentes Ambientales.

En la página siguiente se adjunta el formato tipo para el registro de incidentes ambientales en los proyectos.

Título Breve Código

ENVIRONMENTAL INCIDENT REPORT FICHA DE IDENTIFICACIÓN DE INCIDENTES AMBIENTALES

KEPJOL						
	C	OMPANY INFORMATION Documentación de E	mpresa			
Company Name /	Nombre Empresa					
Work site Centro o	de Trabajo					
		IFIED THE INCIDENT Documentación Trabajad	or que identifica el in	cidente		
Company Name /		, i	<u> </u>			
Work site Centro o						
TTOTAL GILO GOME O		IT IDENTIFICATION IDENTIFICACIÓN DEL INCIDEI	VTF AMBIENTAI			
Location, date, and Localización del hora:	time:		VIE / WIDIEIVI/ (E			
Type of Incident: Tipo de incidente:		 Leak, spill, or discharge of hazardous substance (list substance) Fuga, derrame o vertido de sustancias peligrosas (indicar sustancias). □ Emission Emissión □ Other Otros (indicar) 	Leak, spill, or discha waste (list waste) Fuga de residuo peligroso (ir Fire Incendio	, derrame o vertido		
			Water Agua			
Natural resource at	ffected:	Ground Suelo	Vegetation Vegetación			
Medio natural afec		☐ Wildlife Fauna	Heritage Patrimonio			
		Other Otros (indicar)				
		Eyewitness Por presencia directa.	Warning from another le otra persona.	person Por aviso		
How the incident was detected Como se detectó el incidente		□ Alarm systems Por activación Sist. Seguridad. □ Other Otros (indicar) □ Eyewitnesses, if any (Name, Company, job position) □ Si hubo testigos presenciales (indicar nombre, empresa y cargo)				
A staticina a tita fa assa a c						
Additional informati						
Otros datos de inte Incident Description		2,100.00				
modent Description	Descripcion der s	840630				
Affected Area		Not defined Indeterminada □	Area outside of work solvers	ite affected Afecta		
Zona afectada:		Within site limits Dentro de los límites de la instalación.				
Risk of spreading Riesgo de propaga	ación		Water streams or reser gua o embalses. Other Otros	voirs Corrientes de		
		Leak Escape	Equipment breakdown	Avaría da aquina		
Main cause of incid	Nont	Human error Fallo humano				
Causas/ origen del				Unexpected Event Accidente fortuito Unrelated to REPSOL Ajeno a REPSOL		
outrous, striggt, us.		Other Otros (indicar)		ye a		
Consequences of the ev		Controlled event without damage Suceso controlado sin daños.	_			
Consecuencias de	l suceso:	☐ Serious event with potential to be very serious ☐ Very serious damage Suceso muy grave.				
		Suceso grave con evolución a muy grave INCIDENT MANAGEMENT GESTIÓN DEL INCID	DENTE			
Corrective messure	oo takan	INCIDENT MANAGEMENT GESTION DEL INCID	JENIE			
Corrective measure Actuaciones tomac						
Resources used						
Medios empleados						
Personnel involved		Company staff Personal propio (indicar).	Contractors Contratas (indicar)		
Personal que ha pa	articipado	External resources Ayuda externa (indicar)	,	,		
Site situation		Suspension Parada de la instalación	Evacuation Evacuación			
Situación de la inst		Other Otros (indicar)				
Preventive recomm Recomendaciones						
Closing date Fecha de cierre:						
, dona de dierre.		INVESTIGACIÓN REALIZADA POR				
Nombre Completo		ZONOIOITHEREIZHONTON	Firma	Fecha		
				. 00114		
		INVESTIGACIÓN APROBADA POR				
Nombre Completo			Firma	Fecha		

AÑO 2024 INFORME RCA CERNÍCALO PRIMILLA PLAN DE VIGILANCIA EN EXPLOTACIÓN CLÚSTER AGUASVIVAS, PES LAS MAJAS VII Azuara, Moyuela, Moneva (Zaragoza), Blesa y Muniesa (Teruel)

INDICE

1.	INTRODUCCIÓN
2.	OBJETIVO
3.	ÁREA DE ESTUDIO
4.	CERNÍCALO PRIMILLA (FALCO NAUMANNI)
4.1.	CARACTERIZACIÓN DE LA ESPECIE
4.1.1.	TAXONOMÍA Y ESTADO DE CONSERVACIÓN
4.1.2.	DISTRIBUCIÓN
4.1.3.	ESTADO POBLACIONAL, PENÍNSULA IBÉRICA
4.1.4.	TENDENCIAS Y AMENAZAS
4.1.5.	HÁBITAT Y ALIMENTACIÓN
4.1.6.	MIGRACIÓN Y MOVIMIENTOS DISPERSIVOS
4.1.7.	ÁREAS PREMIGRATORIAS Y ALIMENTACIÓN
5.	ESTUDIO DE SEGUIMIENTO DE LA POBLACIÓN11
5.1.	USOS DEL ESPACIO
5.2.	SINIESTRALIDAD
6.	RESULTADO Y DISCUSIÓN14
7.	MEDIDAS APLICADAS15
8.	RESUMEN Y CONCLUSIONES
9.	BIBLIOGRAFÍA17
10	FICHA DE SEGUIMIENTO DE INCIDENCIAS SORRE FALINA 15

1

1. INTRODUCCIÓN

En este informe se recogen los datos tomados, durante los tres años de vigilancia ambiental (2021-2024), sobre el cernícalo primilla (*Flaco naumanni*) y sus interacciones con las infraestructuras. En el contexto de un parque eólico en un entorno monte, con cotas entre 700-850 msnm, destinado el cultivo de cereal en secano próximos a los ríos de Herrera y del río Cámaras, en el término municipal de Herrera de los Navarros en la provincia de Zaragoza. Donde se encuentra el parque eólico Las Majas7E (FUERZAS ENERGÉTICAS DEL SUR DE EUROPA VI, S.L).

Este estudio surge como consecuencia de la mortandad detectada de un ejemplar de cernícalo primilla (*Falco naumanni*), especie incluida dentro del Listado de Especies Silvestre en Régimen de Protección Especial, recogido en la posición LM7E-03 entre el 20 de agosto de 2024 durante las revisiones rutinarias de siniestralidad. Los ejemplares fueron trasladados al arcón de la Subestación Eléctrica (SET) de Las Majas7, quedando reservado hasta su trasladó al Centro de Recuperación de Fauna Silvestre de Zaragoza La Alfranca.

En el marco de la entrada en vigor del *Protocolo de la Dirección General de Medio Natural y Gestión Forestal en relación a la ADOPCIÓN DE MEDIDAS ADICIONALES DE PROTECCIÓN EN LOS CASOS DE AEROGENERADORES CONFLICTIVOS PARA LA FAUNA EN PARQUES EÓLICOS DE ARAGÓN, aprobado y remitido el 17 de marzo del 2023*, donde se especifica que se debe realizar: un análisis del accidente, considerando cuestiones técnicas de funcionamiento del aerogenerador, meteorología, estatus poblacional, fenología y comportamiento del ejemplar accidentado, etc.; un análisis de medidas preventivas y correctoras adicionales a aplicar en el aerogenerador peligroso; el establecimiento de protocolo de actuación ante situaciones de riesgo previamente a reiniciar el funcionamiento del aerogenerador; según el caso, inclusión de paradas temporales (pasos migratorios, periodo de actividad, etc.) y puesta en marcha de un seguimiento específico, que tenga en cuenta los requerimientos particulares de la especie, y que incorpore al menos el número de visitas a realizar y la metodología a seguir. Se expone a continuación dichos análisis y de los protocolos y medidas propuestos.

2. OBJETIVO

Durante el mes de agosto se detectaron varias colisiones de cernícalo primilla en algunos de los aerogeneradores de los parques eólicos de Las Majas7. Esta ave no se había avistado hasta ahora en la zona de estudio durante este año.

Con las conclusiones obtenidas y las propuestas de actuación indicadas en el Protocolo del Gobierno de Aragón de 2023, se expone un análisis de las posibles causas de la siniestralidad, además de diseñar el plan de acción. De manera necesaria, algunas medidas ya se han llevado a cabo, como: la ya propuesta de parada precautoria, la puesta en marcha de jornadas de vigilancia activa y la realización del puntos de observación para conocer las zonas de paso, abundancia y muestreo del uso del espacio de esta especie de los ejemplares migrantes. A continuación, se expone los resultados obtenidos y se da una respuestas lo más cercanas posibles a la realidad de esta especie y a su problemática con los aerogeneradores.

3. ÁREA DE ESTUDIO

El Parque Eólico Las Majas VII E se encuentra en el término municipal de Herrera de los Navarros, al noreste de la localidad, muy próximo al río Herrera.

El paisaje lo conforma el uso del suelo, el tipo de vegetación y la orografía. El uso del suelo es eminentemente agrícola, de secano (trigo, cebada y almendra). Con un tipo de suelo muy productivo, aunque más escaso en Azuara. La orografía es irregular formando pequeñas colinas de hasta los 900 msnm con pendientes pronunciadas, lo que impide el aprovechamiento agrícola de toda la superficie, y en algunas ocasiones haciendo uso de bancales. Estas zonas no cultivadas, son un reducto para las especies silvestres (*Thymus vulgaris, Lygeum spartum, Retama sphaerocarpa, Quercus ilex, Quercus coccifera, Cistus albidus, Pinus halepensis, Pinus pinaster* y otras). El suelo superficial es de tipo arcilloso, presenta una coloración rojanaranjada (2.5YR 4/6) que contrasta fuertemente con la vegetación y con los elementos de color claro del entorno. Las figuras de corrales de adobe y la escasa presencia humana, conforma un paisaje apacible.

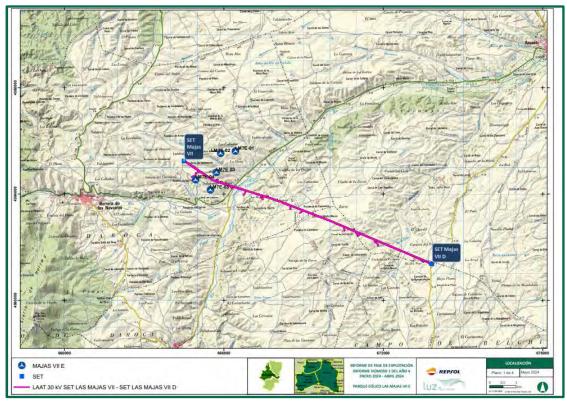


Figura 1. Localización del parque eólico Las Majas7E.

AÑO 2024 INFORME RCA CERNÍCALO PRIMILLA PLAN DE VIGILANCIA EN EXPLOTACIÓN CLÚSTER AGUASVIVAS, PES LAS MAJAS VII Azuara, Moyuela, Moneva (Zaragoza), Blesa y Muniesa (Teruel)

4. CERNÍCALO PRIMILLA (Falco naumanni)

4.1. Caracterización de la especie

4.1.1. TAXONOMÍA Y ESTADO DE CONSERVACIÓN

Es una rapaz de tamaño pequeño (58-72 cm de envergadura y 29-32 cm de longitud) de la familia de los halcones. Es de menor tamaño que el cernícalo vulgar, aunque esta diferencia es difícil de apreciar a distancia. El pico es oscuro y la cera y las patas son de color amarillo, muy similar al cernícalo vulgar. A diferencia del cernícalo vulgar, las uñas son de color claro. El iris es de color pardo oscuro (Cramp y Simmons, 1980). Dorso pardo, liso en el macho y moteado de oscuro en hembra y juveniles; partes inferiores ocres y moteadas. Cola larga, gris sin estrías en el macho, más ocre y estriada en hembra y juveniles. Ala con la primaria más externa más larga que la séptima. (Blasco-Zumeta J. & Heinze G. M.).

A nivel nacional está catalogada como "Vulnerable" en el Libro Rojo y "De Interés Especial" en el Catálogo Nacional de Especies Amenazadas. A nivel autonómico, en Aragón, se encuentra como especie "Sensible a la alteración del hábitat" en el Catálogo de Especies Amenazadas de Aragón.

Fotografía 1. Cernícalo primilla (Falco naumanni).

4.1.2. DISTRIBUCIÓN

Esta especie se reproduce en España, Portugal, Gibraltar (hasta el Reino Unido), Francia, Italia, y en todos los países de la cuenca mediterránea. Varios miles de parejas se reproducen fuera de este área, principalmente en Asia central. Las aves pasan el invierno en el sur de España, el sur de Turquía, Malta y en gran parte de África, particularmente en Sudáfrica. (IUCN, 2021).

4.1.3. ESTADO POBLACIONAL, PENÍNSULA IBÉRICA

Según el Censo de Cernícalo Primillo en España realizado por SEO entre 2016-2018, en España cuenta con una población mínima de 14.072 ejemplares y en aumento. La población total de cernícalo primilla en Aragón en 2016 se estima en 663 parejas distribuidas en 224 colonias, considerada en declive desde el año 2009.

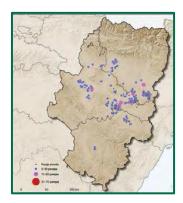


Figura 2. Distribución observada en el III Atlas (2014-2018). Las cuadrículas UTM de 10×10 km marcadas como «Reproductor» incluye reproducción posible, probable o segura.

4.1.4. TENDENCIAS Y AMENAZAS

El cernícalo primilla está considerada como una especie localmente amenazada. De acuerdo con los distintos catálogos de protección, el estado de conservación está considerado de la siguiente manera:

- Categoría global IUCN (2021): Preocupación Menor LC
- Figura en el Listado de Especies Silvestres en Régimen de Protección Especial (BOE 2011).
- No figura en el Catálogo Español de Especies Amenazadas (BOE, 2011).
- Figura en el Catálogo de Aragón de Especies Amenazadas como "Vulnerable" VU. (BOA 2022).
- En el Libro Rojo de las aves de España, está considerada como "Vulnerable" VU

Según un estudio realizado por SEO/BirdLife en 2023, se analizaron las causas de muerte de la fauna recogido en los Centros de Recuperación de Fauna (CRF) de España en el periodo de 2008-2018, se obtenía que las causas de ingreso del cernícalo primilla fueron las siguientes: colisión con tendidos eléctricos 1,05%, 0,71% electrocución, atropello 0,59 %, otras infraestructuras 0,54

%, colisión con aerogeneradores 1,98%, captura ilegal 0,96%, disparo 0,49%, envenenamiento 0,26%, contaminación del plumaje 2,45%.

4.1.5. HÁBITAT Y ALIMENTACIÓN

El cernícalo primilla es una especie colonial que puede formar colonias de más de un centenar de parejas reproductoras. En la península Ibérica las colonias se instalan en general en construcciones humanas, aunque algunas parejas crían en cortados rocosos e incluso entre las

piedras de los majanos o en los tejados derrumbados de antiguas construcciones rurales. Las colonias se localizan tanto en casas de campo como en el interior de cascos urbanos. En muchas ocasiones el establecimiento de colonias de cernícalo primilla ha sido favorecido mediante la construcción de pequeñas edificaciones con tal fin (los denominados "primillares") o colocación de tejas-nido.

Se trata de una especie ligada a zonas esteparias cerealistas, cultivos donde la altura de la vegetación sea baja (trigo en secano o alfalfa) en rastrojos y en las márgenes de los campos, donde obtiene mayor éxito en la caza.

Durante la reproducción busca estos hábitats en zonas llanas y generalmente a poca altitud, cerca de donde tenga posaderos. En Aragón, la especie se distribuye como nidificante por el fondo de la depresión del Ebro, a no más de 40 km de este río, y por debajo de los 500 m de altitud.

Sin embargo, durante el verano, periodo de desplazamientos posterior a la reproducción, se desplaza a estepas situadas más al norte y más elevadas (Fernández, J.G., 2000), posándose en los campos de cultivo ya cosechados.

Se alimenta básicamente de insectos, particularmente ortópteros, en especial saltamontes y grillos, y con menor frecuencia, sobre todo en la época reproductora, de ratones, topillos y lagartijas que habitualmente caza desde el aire (Franco & Andrada 1977; Heredia et al. 1996,

Fig. 4). El Cernícalo Primilla habita en áreas abiertas. Se ha adaptado exitosamente a vivir en áreas agrícolas con cultivos extensivos, sobre todo de secano, y con escasa presencia de árboles.

Las técnicas de caza más usadas durante este periodo son el vuelo cernido donde el ave mantiene una posición en el aire para divisar a su presa y lanzarse en picado sobre ella. Otra de las estrategias, más habitual en la captura de insectos, es permanecer posado en el suelo en lugar algo más elevado y desplazarse, en ida y vuelta, ahí donde ha detectado un insecto. (Frutos Tena, Á. D.,2009).

4.1.6. MIGRACIÓN Y MOVIMIENTOS DISPERSIVOS

Especie migrante transahariana, proveniente del centro-oeste de África preferentemente. En el sur de la península ibérica y algunas zonas del norte, como en el valle del Ebro, se han localizado colonias invernantes. Aunque ocasionalmente se observen aves que pasan el invierno en zonas favorables del centro y sur de la península Ibérica. La mayoría de ellas, se reproducen en la Península Ibérica y otros territorios del mediterráneo y regresa al sur de África donde inverna.

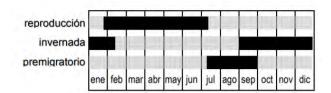


Figura 3. Ciclo anual aproximado del cernícalo primilla. (Balmaseda, J. J. N., 1992).

Los periodos migratorios tienen lugar antes y después de la reproducción, donde recorren miles de kilómetros cruzando el estrecho de Gibraltar. Los cernícalos primillas regresan a sus áreas de cría desde sus cuarteles de invernada hacia el mes de febrero, pudiéndose prolongar hasta el mes de marzo ya que el celo comienza a principios de abril (Balmaseda, 1992).

Las crías realizan sus primeros vuelos entre finales de junio y la primera quincena de julio, y pueden llevar a cabo dispersiones juveniles premigratorias (García 2000; Olea 2001b), que independizados des sus progenitores cinco días después de emplumar (Bustamante & Negro, 2004), se desplazándose desde sus colonias natales una media de 210 km preferentemente hacia el norte antes de iniciar la migración al sur (Olea 2001b). Estas dispersiones parecen ser debidas a la abundancia de recursos tróficos en las áreas premigratorias, donde la especie puede

congregarse en grandes dormideros comunales estivales (hasta más de 1000 individuos; Olea 2001a; Ursúa & Tella 2001). Las poblaciones migradoras realizan su viaje trans-sahariano entre septiembre y octubre (Bernis 1980).

Durante los periodos de dispersión premigratoria, se ha comprobado que se da mayoritariamente en los ejemplares nacidos ese año, que se desplazan en pequeños grupos generalmente hacia el norte y a cotas de hasta 500 m.s.n.m. (Fernández, 2000).

Muchos autores recalcan la importancia de introducir en los planes de conservación de esta especie, las áreas de dispersión premigratoria ya que son lugares donde deben alimentarse abundantemente antes de la migración y donde se puede asegurar en mayor medida la supervivencia de los ejemplares jóvenes.

4.1.7. ÁREAS PREMIGRATORIAS Y ALIMENTACIÓN

Tras abandonar sus áreas de reproducción, permanecen en áreas premigratorias donde deben acumular reservas de grasa y realizar un cambio parcial de plumas, antes de la migración. Se ubican en posaderos y se desplazan diariamente a las zonas de campeo, pudiendo recorrer 9 km para ello (Frutos Tena, Á. D.,2009).

En un 96,2% los primillas ocupan, durante esta etapa, zona de cultivo, prefiriendo los cultivos de cereal y rastrojos, realizando un uso intensivo del espacio. (Frutos Tena, Á. D.,2009).

Se alimenta básicamente de insectos, particularmente ortópteros, en especial saltamontes y grillos, y con menor frecuencia, sobre todo en la época reproductora, de ratones, topillos y lagartijas que habitualmente caza desde el aire (Franco & Andrada 1977; Heredia et al. 1996, Fig. 4). El Cernícalo Primilla habita en áreas abiertas. Se ha adaptado exitosamente a vivir en áreas agrícolas con cultivos extensivos, sobre todo de secano, y con escasa presencia de árboles.

Las técnicas de caza más usadas durante este periodo son el vuelo cernido donde el ave mantiene una posición en el aire para divisar a su presa y lanzarse en picado sobre ella. Otra de las estrategias, más habitual en la captura de insectos, es permanecer posado en el suelo en lugar algo más elevado y desplazarse, en ida y vuelta, ahí donde ha detectado un insecto. (Frutos Tena, Á. D.,2009).

5. ESTUDIO DE SEGUIMIENTO DE LA POBLACIÓN

5.1. USOS DEL ESPACIO

Como se ha expuesto en el apartado anterior, los ejemplares jóvenes y subadultos realizan desplazamientos de larga distancia durante 2 meses, antes de la migración a los lugares de invernada.

Mediante una transición de colores, en el siguiente gráfico se muestra las fechas en las que se dan las distintas etapas vitales, por la que pasa esta especie en su estancia en la zona de estudio.

MIGRACIÓN PRENUPCIAL – PUESTA Y CRÍA - DISPERSIÓN PREMIGRATORIA – M. POSTNUPCIAL FEBRERO – MARZO - ABRIL – MAYO – JUNIO - JULIO – AGOSTO - SEPTIEMBRE

Figura 4. Ciclo vital del Cernícalo primilla durante su ciclo biológico anual.

Durante la época la reproducción no se ha detectado la presencia de esta especie en las inmediaciones del parque. Se tiene constancia de colonias reproductivas a 40 km al este de la zona de estudio, por lo que se descartaba la posible afectación a la especie. En periodo premigratorios, se han visto ejemplares de cernícalo primilla por los alrededores. Estos suelen volar en bandos, en su mayoría se trataba de ejemplares jóvenes, que, durante este tiempo, realizan desplazamientos premigratorios. Sus vuelos suelen ser de prospección y cernido a lo largo de amplias horas del día.

Durante esta temporada, se han visto pequeños bandos en paso cerca de la SET LM7 y del PE Las Majas7E.

Figura 5. Localización del parque eólico Las Majas7E.

Fotografía 2. Cernícalo primilla (Falco naumanni)

Se ha fotografiado a varios ejemplares en paso durante el mes de agosto de este año.

5.2. SINIESTRALIDAD

A continuación, se muestra las colisiones detectadas a lo largo del año en el parque eólico Las Majas7E:

FECHA	PARQUE	ID	EDAD	SEXO
20/08/2024	LAS MAJAS7E	LM7E 03	Subadulto	Macho

Tabla 1. Siniestralidad detectada de *Falco naumanni* en el PE de Las Majas7E en 2024.

Tal y como se conoce, muchos ejemplares juveniles realizan desplazamientos errantes a zonas de alimentación antes de iniciar la migración a finales de septiembre. Muchos de los ejemplares detectados en los últimos años coinciden con esta franja de edad. Adjunto a este documento, se encuentra la ficha del evento de la colisión encontrada.

6. RESULTADO Y DISCUSIÓN

El parque eólico está ubicado en una zona de paso migratorio y premigratorio, no muy abundante, de ejemplares de cernícalo primilla. Antes de la migración al sur de África, los ejemplares jóvenes hacen desplazamientos al norte a zonas de mayor alimento, donde permanecen poco tiempo hasta haber recuperado reservas de grasa.

Tras estudiar el comportamiento de estas aves en las etapas postnupcial y migración, conocer los patrones de desplazamientos y sus hábitats de campeo y, en conocimiento de los datos de mortandad recogidos en las revisiones de avifauna en los aerogeneradores, junto con los avistamientos y seguimiento de esta especie realizados durante las mismas, se puede concluir que:

- El ejemplar colisionado y así como muchos de los demás avistados, se trataban de ejemplares subadultos o juveniles.
- Todos estos se encontraban en un área de paso, no permaneciendo mucho tiempo en ellas.
- Hasta ahora, durante los años de seguimiento, las observaciones de esta especie se han dado en puntos distintos de la zona de estudio, lo que dificulta adoptar medidas particulares y la caracterización del problema. Aunque parece que tienen preferencia por donde discurren líneas de alta tensión.
- En los planes de conservación de esta especie, no aparecen recogidas medidas encaminadas a proteger las áreas de alimentación en su desplazamiento premigratorio, siendo esencial para garantizar una tasa de reclutamiento mayor.

14

7. MEDIDAS APLICADAS

Desde el momento en el que se tuvo conocimiento de las colisiones producidas, se tomaron las siguientes medidas:

- Se puso en marcha el protocolo de parada en el aerogenerador afectado: LM7E-03.
- Se mantendrán parados hasta que cese el paso de esta especie, siendo este finales de septiembre.
- Se activan las máquinas mientras se mantiene el sistema de vigilancia activa, desde las 8h hasta las 20h. Esto se llevó a cabo por la empresa que realiza el plan de vigilancia del parque con dos técnicos durante una jornada el 26 de agosto y que se prolongó durante varios días distribuidos en varias semanas durante el mes de septiembre y primera semana de octubre. Durante ese tiempo, se pudieron detectar la presencia de varios ejemplares de cernícalo primilla y otras rapaces en paso, y donde se realizaron varias paradas preventivas. También, el flujo migratorio a lo largo de la ventana de ejemplares en paso.
- Se seguirán realizando los trabajos de prospección sobre esta especie, especialmente durante la migración postnupcial, para detectar el tiempo de presencia de la especie.
- Se reforzará el seguimiento y análisis del uso del espacio en el tiempo inmediatamente anterior al inicio de la dispersión premigratoria para definir sistemáticas de vigilancia activa con antelación a la presencia de la especie.

15

8. RESUMEN Y CONCLUSIONES

Dada las fechas en las que se produjeron las colisiones y la edad de los individuos, se trataban de ejemplares en desplazamiento premigratorio.

Este año, desde que se tuvo conocimiento de las colisiones producidas, se puso en marcha el protocolo de parada del aerogenerador afectado LM7E-03 y se mantendrá parados hasta que cese el paso de esta especie, que se presupone que será a hasta mediados de septiembre, atendiendo al Protocolo de la Dirección General de Medio Natural y Gestión Forestal en relación a la ADOPCIÓN DE MEDIDAS ADICIONALES DE PROTECCIÓN EN LOS CASOS DE AEROGENERADORES CONFLICTIVOS PARA LA FAUNA EN PARQUES EÓLICOS DE ARAGÓN, aprobado y remitido el 17 de marzo del 2023.

Se activó **el sistema de vigilancia activa** desde el orto hasta el ocaso, donde se pudieron detectar la presencia de varios ejemplares de cernícalo primilla. Esto se realizó en una jornada en agosto, trece jornadas en el mes de septiembre y prolongándose en el mes de octubre.

Se seguirán realizando los trabajos de prospección sobre esta especie, especialmente durante la migración postnupcial, para detectar el tiempo de presencia de la especie.

9. BIBLIOGRAFÍA

- Balmaseda, J. J. N. (1992). Ecologia de poblaciones del cernicalo primilla (falco naumanni) (Doctoral dissertation, Universidad de Sevilla).
- Blasco-Zumet J. & Heinz G. M. FAUNA DE PINA DE EBRO Y SU COMARCA /AVES/FALCO NAUMANNI. (www.monteriza.com).
- Bernis, F. 1980. La migración de las aves en el estrecho de Gibraltar: época posnuncial.
 Volumen I. Aves planeadoras. Cátedra de Zoología de Vertebrados. Universidad
 Complutense, Madrid.
- Bustamante, J. & Negro, J.J. 1994. The postfledging dependence period of the Lesser Kestrel (Falco naumanni) in Southwestern Spain. Journal of Raptor Research 28, 158-163.
- Cramp, S., Simmons, K. E. L. (Eds.) (1980). Handbook of the Birds of Europe the Middle East and North Africa. The Birds of the Western Palearctic. Vol. II. Hawks to Bustards. Oxford University Press, Oxford.
- FERNÁNDEZ, J. G. (2000). Dispersión premigratoria del cernícalo primilla Falco naumanni en España. Ardeola, 47(2), 197-202.
- Franco, A. & Andrada, J.A. 1977. Alimentación y selección de presa en Falco naumanni.
 Ardeola 23, 137-187.
- Frutos Tena, Á. D. (2009). Ecología y conservación del Cernícalo Primilla durante el periodo premigratorio.
- García, J. 2000. Dispersión premigratoria del Cernícalo Primilla Falco naumanni en España. Ardeola 47, 197-202.
- Olea, P.P. 2001b. Sobre la dispersión premigratoria del Cernícalo Primilla Falco naumanni en España. Ardeola 48, 237-241.
- Ursúa, E. & Tella, J.L. 2001. Unusual large communal roosts of Lesser Kestrel in two electric substations of Northern Spain: implications for the conservation of Spanish population, In Abstracts of the 4th Eurasian Congress on Raptors. eds J. Bustamante, G. Crema, E. Casado, J. Seoane, C. Alonso, C. Rodríguez, M. de Lucas, G. Janss, p. 188. Estación Biológica de Doñana and Raptor Research Foundation, Sevilla, Spain.

17

10. FICHA DE SEGUIMIENTO DE INCIDENCIAS SOBRE FAUNA

AÑO 2024 SEGUNDO INFORME CUATRIMESTRAL PLAN DE VIGILANCIA EN EXPLOTACIÓN PE LAS MAJAS VII E

Azuara, Aguilón y Herrera de los Navarros (Zaragoza)

ANEXO 5: NUEVA CARTELERÍA

Aceite usado

LER 13 02 05* - LER 13 01 04*

Aerosoles

LER 15 01 11*

Baterías

LER 16 06 01*

Envases metálicos contaminados

LER 15 01 10*

Envases plásticos contaminados

LER 15 01 10*

Filtros de aceite

LER 16 01 07*

RAEE condensadores

LER 16 02 13*

RNP chatarra

RNP madera

RNP orgánico

RNP paneles fotovoltaicos

RNP papel y cartón

RNP plástico

Tierras contaminadas

LER 17 05 03*

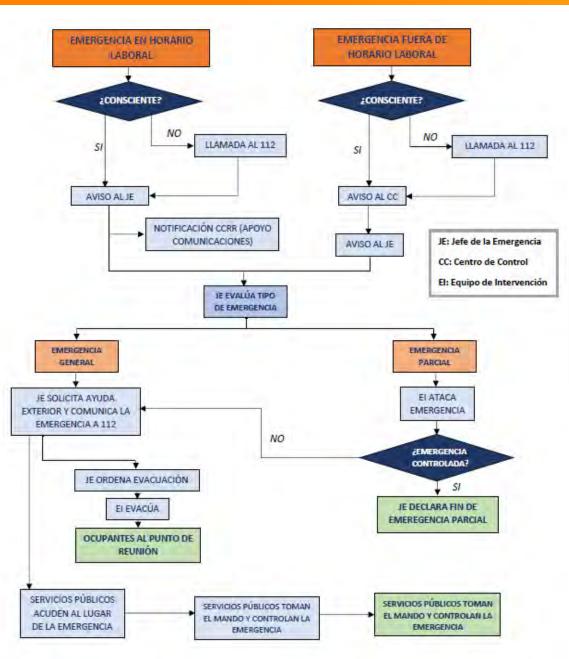
Trapos y absorbentes

LER 15 02 02*

Tubos fluorescentes

LER 20 01 21*

Confort térmico



⚠ No manipular el termostato

Temperatura	recomendada (RITE):	Humedad relativa:
	• Verano Entre 23°C y 25°C.	Entre el 45% - 60%
	Invierno Entre 21°C y 23°C.	Entre el 40% - 50%

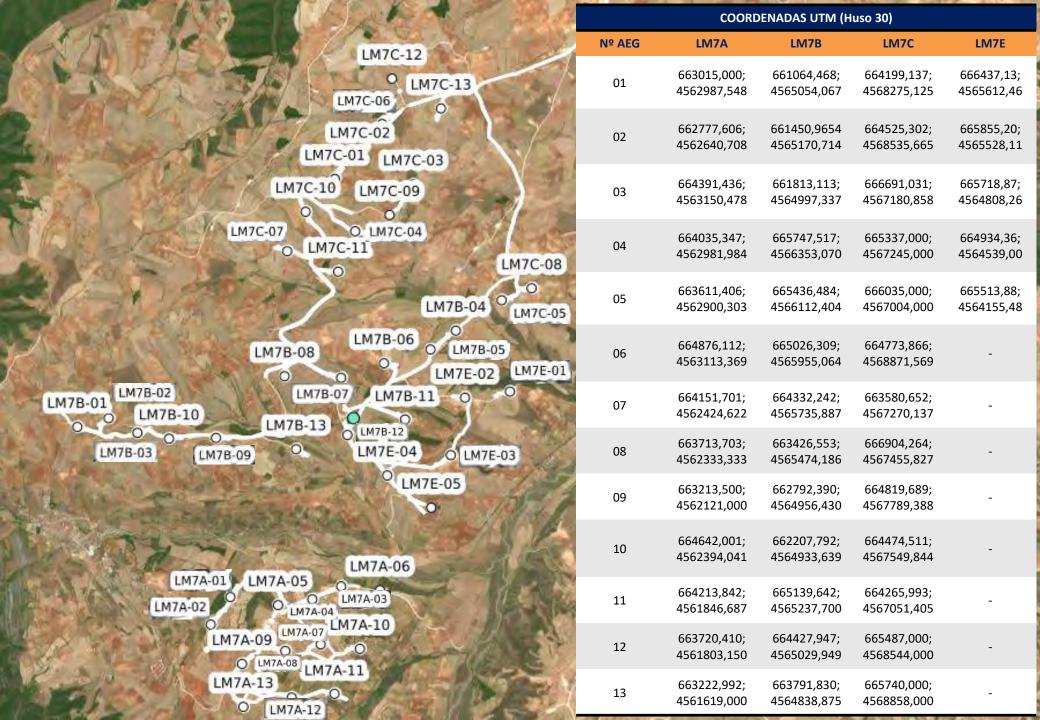
PROCEDIMIENTO DE COMUNICACIÓN DE LA EMERGENCIA AGUASVIVAS LM7 (ZARAGOZA)

			•	REPSOL
		TELÉFONOS DE EMERGENCIA	A	
(i)	JEFE DE EMERGENCIA	TITULAR: MIGUEL GRACIA MARTIN SUPLENTE: MIGUEL HEREDIA RODRIO		08 709 548 39 909 682
(1)		ELÉFONO DE EMERGENCIA DE CONTROL REPSOL RENOVABLES	9	112 17 534 824
		BOMBEROS (URGENCIAS)		080
A		POLICÍA NACIONAL		091
9		POLICÍA MUNICIPAL		092
	URGEN	ICIAS MÉDICAS (AMBULANCIAS)		061
	HOSPITA	L UNIVERSITARIO MIGUEL SERVET	9	76 756 500
		CRUZ ROJA	9	02 222 292

UBICACIÓN EXPLANADA ACCESO SET COORDENADAS ST X: 664497
(Huso 30) Y: 4565241

SET LAS MAJAS

VII



DESA disponible en ST conectado a asistencia sanitaria remota

Plan de Autoprotección completo accesible en la ST

