

ANEXO VIII

INFORME RESUMEN JUSTIFICATIVO- FICHA RESUMEN.

Justificación octubre 2023.

Tipo de informe (marcar el que proceda):

☐ Anual, proyecto en curso (se presentará en la justificación de octubre o en la de junio si se justifica la anualidad entera en este mes)

X Final de proyecto (justificación de junio o de octubre, en función de cuando termine el proyecto). <u>Terminan los de la convocatoria 2020.</u> Se acompañará de power point de 30 imágenes de las distintas fases con una breve explicación de cada una de ellas.

Nº Código del grupo de cooperación: GCP2020000800

Nombre del grupo de cooperación: ALTERNATIVAS EN EL APROVECHAMIENTO Y CONTROL DEL POTENCIAL DE LAS BALSAS DE PURINES

Ámbito de actuación (señalar el que corresponda: productividad y sostenibilidad de explotaciones, mejora del regadío o aumento del valor añadido): Productividad y sostenibilidad de explotaciones

Número de miembros del grupo:

Beneficiarios:

- -AGRUPACION DEFENSA SANITARIA №1 PORCINO DE TAUSTE
- -INTERGIA ENERGÍA SOSTENIBLE S.L
- -TAUSTE CENTRO GESTOR DE ESTIÉRCOLES S.L

Miembros no beneficiarios:

- -UNIVERSIDAD DE ZARAGOZA FACULTAD DE VETERINARIA DTO DE ANATOMÍA EMBRIOLOGÍA Y GENÉTICA
- -CENTRO TECNOLÓGICO AGROPECUARIO CINCO VILLAS,S.L

Reseña de reuniones celebradas:

25/11/2022

Integrantes: Cristina Escriche (Intergia), Fernando Ederra (Tauste CGE)) y Eva Dorado y Ana María Vargas (Inneara).

En esta reunión se trataron los siguientes temas:

- El sensor medirá concentraciones en ppm en 3 situaciones diferentes: reposo/en la descarga de purín/agitación. Comparación de resultados



- Intergia:Los resultados de las placas fotovoltaicas instaladas han generado poca energía eléctrica. Estudio en fase
- Intergia, recomienda un sistema de mantenimiento y limpieza para las placas instaladas. 1 vez/mes.

21//12/2022

Integrantes: Cristina Escriche y Javier Carroquino (Intergia), Fernando Ederra (Tauste CGE), Trini Ansó (ADS Tauste) y Mª Pilar Esteban y Ana María Vargas (Inneara).

En esta reunión se trataron los siguientes temas:

- Instalación de nuevos sensores en puntos estratégicos de la balsa.
- Planificación de tareas para la justificación de la anualidad 2023.
- El sensor medirá concentraciones en ppm en 3 situaciones diferentes: reposo/en la descarga de purín/agitación. Comparación de resultados.
- Estudio de otras alternativas tecnológicas para la medición de emisiones: cámaras dinámicas flotantes
- Necesidad de realizar reuniones cada mes, próxima reunión:mediados de enero del 2023.

02/02/2023

Integrantes: Trini Ansó (ADS Tauste), Cristina Escriche y Javier Carroquino (Intergia), Fernando Ederra (Tauste CGE) y Eva Dorado y Ana María Vargas (Inneara).

En esta reunión se trataron los siguientes temas:

- Se ha realizado prueba "a nivel de laboratorio" para determinar la concentración de NH3 (sistema cerrado). Se han realizado mediciones en 5 l de purín, donde el sensor índico 20-30 ppm (sistema cerrado), se saturo a 30 ppm.
- Se pretende realizar medidas en diferentes balsas (control y problema). El sensor dio resultados en tiempos determinados, hasta saturarse, 30 minutos=30 ppm NH3.
- Se pretende instalar una estación meteorológica para registrar datos de las distintas variables climáticas: velocidad y dirección del viento, precipitaciones, temperatura, humedad relativa y radiación solar. Con estas medidas se pretende realizar una comparativa en diferentes tiempos estacionales.
- Se pretenden realizar medidas en balsa zonas problema (pasillo,placas solares y flotadores, hexágonos) y control (parte de la balsa sin cubrir), a una determinada altura para evitar la inmediata saturación. Comparativas de mediciones .Realización de protocolo estacional.
- Placas fotovoltaicas: Problemas técnicos de sombreado, nuevos cambios en instalación. Tiempo estimado de solución: 2 días.
- Comparativas de mediciones en balsas con cubiertas de: hexágono, costra, placas y sin ningún tipo de cubierta.
- Realizar analíticas de purín espaciadas en todo el proceso de justificación.

13/06/2023

Integrantes: Trini Ansó (ADS Tauste), Cristina Escriche (Intergia), Fernando Ederra (Tauste CGE) y Mª Pilar Esteban y Ana María Vargas (Inneara) y Rocio Sarasa (Inneara)

• Reunión de coordinación: compartir resultados producción FV y medición de emisiones; estudio de atmósfera explosiva; organización de la última anualidad: presupuesto y divulgación.

Descripción de los trabajos realizados por el grupo y cronograma (resumen):

		20	20			20	21			20	22			20	23	
	T1	T2	Т3	T4												
AC.1																
AC.2																
AC.3																

El proyecto tiene tres actividades diferenciadas que se han desarrollado a lo largo de las cuatro anualidades del proyecto. Todas ellas tienen en común formar parte de un planteamiento multifactorial. El proyecto comenzó con el estudio y la selección de potenciales tecnologías a aplicar en base al estado del arte actual, posteriormente, se procedió a la realización de diversos prototipos en función de la tecnología definida en la primera fase y, finalmente se ha validado y optimizado cada una de las soluciones implantadas y realizado un plan de difusión a gran escala que haga llegar los resultados por toda la Comunidad y a nivel nacional.

La distribución de las actividades y tareas asociadas queda distribuida de la siguiente manera:

Actividad 3: Implantación de la tecnología a escala piloto.

Una vez validados los prototipos, se realizó una instalación piloto de las dimensiones que se había determinado en los estudios previos en alguna de las explotaciones del grupo que mejor se adaptaba a los requerimientos.

Montaje del prototipo

Características del prototipo final:

Potencia FV:	20,7 kWp	N° módulos FV:	46	
Orientación:	8°	Inclinación:	5°	
Potencia de inversor:		20 kW		
Superficie cubierta	oor sistema flotante:	142,7 m ²		

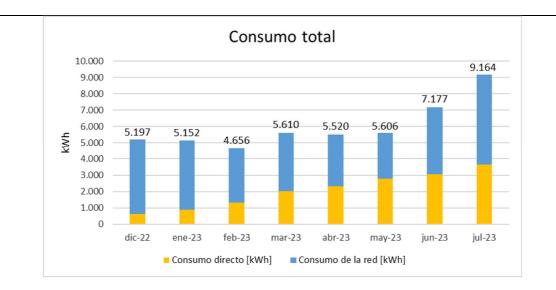
Porcentaje de cubrimiento (sist. flotante):	23,8%	Porcentaje de cubrimiento total (sist. flotante + hexágonos):	34,7%	
---	-------	---	-------	--

El montaje del prototipo demostrativo en la superficie de la balsa de purines de la granja de Mampel Ansó SL en el término municipal de Tauste se llevó a cabo en noviembre de 2022, entre los días 03/11/2022 y 10/11/2022. La puesta en marcha de la instalación en modo experimental se hizo el 23/10/2022.

Una vez instalado, el desempeño del prototipo se ha evaluado en tres vertientes:

- 1.- Por una parte, se ha comprobado el correcto funcionamiento del sistema fotovoltaico, es decir, que produzca energía.
- 2.- En segundo lugar, se ha evaluado de manera visual la degradación de los materiales.
- 3.- Además, puesto que el prototipo de fotovoltaica flotante también incorpora la combinación con una solución ya habitual para el cubrimiento de balsas (mediante piezas hexagonales de plástico), se ha evaluado la correcta interacción entre ambos sistemas.

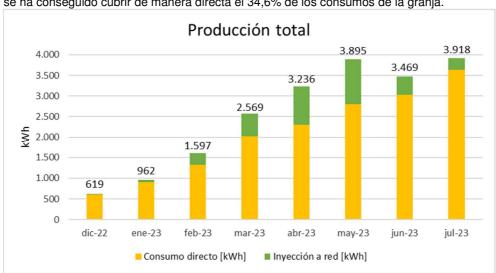
A continuación se detallan cada uno de estos puntos:


1. Producción fotovoltaica

En la plataforma Sunny Portal, de SMA, se registran los datos quinceminutales de consumo directo (de fotovoltaica) y consumo de red por parte de la granja, así como la inyección a red de los excedentes producidos. De esta manera se puede saber el consumo y la producción FV total.

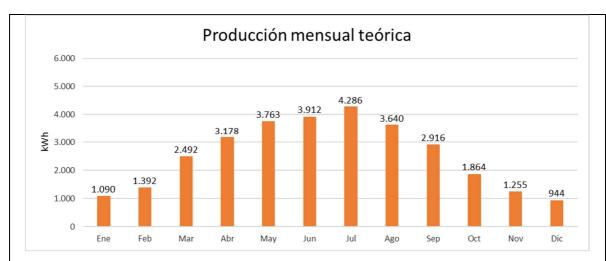
Se han tomado datos desde la puesta en marcha a finales de noviembre de 2022 hasta el desmontaje del prototipo a finales de agosto de 2023. Sin embargo, para facilitar que los datos sean comparables entre sí, sólo se presentan los meses completos: de diciembre de 2022 a julio de 2023.

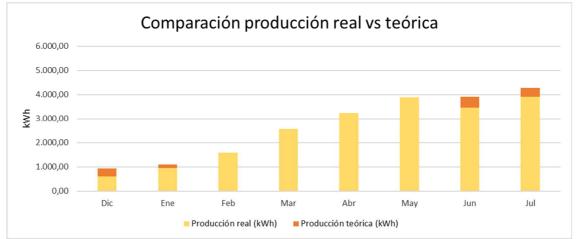




Consumo directo: autarquía, es decir, demanda de la granja que es directamente cubierta por la producción fotovoltaica en el momento.

Consumo de la red: toda aquella demanda que no puede ser satisfecha a partir de la generación fotovoltaica se toma de la red eléctrica.


El perfil de producción es el habitual de cualquier planta fotovoltaica.


Durante el tiempo de funcionamiento, el prototipo demostrativo ha producido un total de 23.371,25 kWh, de los cuales, el 83,5% se ha empleado en cubrir directamente la demanda de la granja, mientras que el 16,5 restante se ha inyectado a la red. Estos excedentes, si la granja se acogiera a modalidad de autoconsumo con compensación, podrían producir un ahorro en adicional en su factura eléctrica.

Se compara la producción real con la teórica, obtenida a partir del diseño del sistema en el software HelioScope. Si bien existe cierta variación, y en los meses de verano no se ha alcanzado la predicción, se comprueba que la desviación entre la producción real del sistema y la prevista no es significativa.

Producción teórica prevista (de diciembre a julio): 21.056 kWh

Producción real (de diciembre 2022 a julio 2023): 20.265 kWh

Desviación: -3,8%

2. Degradación de los materiales

Para comprobar la degradación de los materiales se han efectuado inspecciones visuales. La primera se hizo durante una visita de mantenimiento en la última semana de mayo de 2023. Se encontró que se había producido corrosión en el material de los terminales de los latiguillos de tierra y en los tornillos con los que van sujetos a las grapas de los paneles. El resto de materiales -remaches y arandelas- estaban en correcto estado.

Cerca del término del proyecto se tomó la decisión de desmontar el prototipo demostrativo para poder evaluar mejor la degradación.

Las conclusiones obtenidas son las siguientes:

• <u>Oxidación</u>: se han oxidado los tornillos, tuercas y conectores de los latiguillos de tierra entre paneles. Por otra parte, los pernos empleados para unir los paneles a los flotadores, a través de grapas, se han mantenido sin oxidarse, ya que el material es aluminio.

- <u>Suciedad de los paneles</u>: necesidad de limpieza de paneles cada cierto tiempo, bastaría con agua a no elevada presión, o bien limpieza con agua con jabón subiéndose a la plataforma.
- <u>Suciedad de los flotadores y componentes</u>: se ha comprobado que se queda suciedad de los purines incrustada en el plástico del flotador y de las piezas de unión (uniones largas, cortas, tornillos y tuercas). Además, debido a la forma de estos flotadores, se acumulan bichos en la "bañera" que queda por debajo de los paneles, aunque, en principio, no se ha comprobado que afecten de ninguna manera negativa a los materiales ni al funcionamiento de la instalación

Tornillo de acero zincado

Paneles sucios

Flotadores sucios

Las muestras que se tomaron fueron:

Unión larga sistema flotante. Con suciedad incrustada.

Unión corta sistema flotante. Con suciedad incrustada.

Conjunto tornillo + tuerca sistema flotante. Con suciedad incrustada.

Latiguillos de tierra unidos a grapas. Terminales oxidados.

Grapa con terminal de tierra atornillado oxidado

Grapas con remaches de acero/aluminio y arandelas de acero. No se han oxidado.

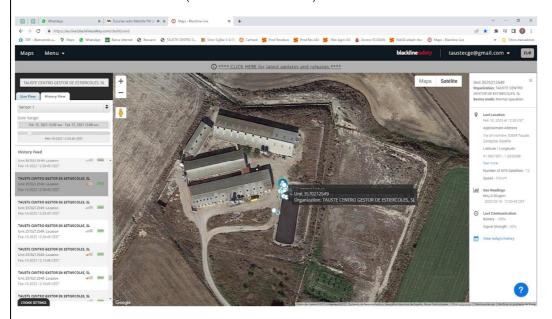
Grapas con remaches de aluminio y arandelas de acero inoxidable. No se han oxidado.

Grapas con remaches de acero inoxidable y arandelas zincadas. Se han oxidado un poco la arandela.

3. Interacción entre los materiales de cubrición

Se evalúa visualmente la interacción entre los flotadores y los elementos hexagonales de plástico: para un número adecuado de elementos de plástico, se comprueba que se ponen en disposición de panal alrededor del sistema fotovoltaico sin problemas. Sin embargo, no llegan a colarse del todo por entre los huecos de los flotadores. Y, en todo caso, quedan algunos espacios entre los flotadores que son demasiado estrechos para que las piezas pasen por entre medio, por lo que quedan parcialmente al descubierto.

Un problema para la correcta interacción entre ambos tipos de elementos son las costras que se forman en el purín semi-líquido, y que se adhieren a las paredes de los flotadores y de los hexágonos. Esto dificulta que se puedan introducir por los huecos entre flotadores. Por ello, se recomienda que los hexágonos se arrojen a la balsa una vez se ha batido el purín. Se llega a la conclusión de que no merece la pena que se introdujesen los hexágonos a mano uno a uno en cada hueco entre flotadores, debido al coste de tiempo que representaría.



4. Reducción de las emisiones

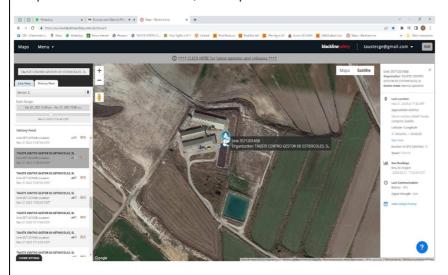
Con la instalación en marcha, se procedió a iniciar un periodo de test donde se registraron, por un lado, los valores medioambientales de emisiones de gases tanto mediante sensores (medición de amoniaco) en la balsa como mediante vuelos del dron (medición de sulfhídrico).

Por un lado se realizaron mediciones tanto en la zona cubierta por el sistema fotovoltaico como en la superficie libre de la balsa (que posteriormente se ha tapado con elementos hexagonales de plástico). La frecuencia de las emisiones ha sido de 15 días. En cada medición además se planteaban diversos protocolos de actuación que se especifican junto a los datos obtenidos.

Los resultados se presentan en el Anexo 1. Medidas de sensorización en balsa y placas.

Los primeros meses fueron de puesta a punto, y a continuación se presentan los resultados desde el momento que ya entraban las mediciones en el estudio, calculando las medias obtenidas una vez al mes y el resumen de los datos finalmente obtenidos:

21 marzo


1. BALSAS

Las condiciones eran:

- Purín soltado a balsa 30 minutos antes de la medición
- Primera medición con Sensor 2 en flotador invertido, a partir de ahora serán todas así, excepto las del dron.
- Flotador sobre purín.

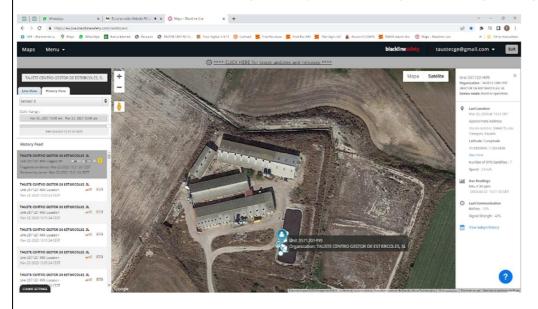
ppm emitidas	55,8	55,8		
Tiempo (horas)	1,25		16:07:04	Inicio
emisiones/dia	1071,36	ppm/día	17:22:04	Fin
Superficie	0,4399	m2	1:15:00	
Vel emisión	2435,46	ppm/m2/día	0,917	
Volumen aire	108	I		
		Se calcula con el		
mg/m3	745,80	peso molecular.		
g	0,080546			
EMISIONES	0,1831004167	g/m2/día		

Se observan emisiones altas porque se trataba de purín recién soltado de fosas. Aunque esto serviría para comparar velocidad de emisiones, un tiempo similar en los dos sensores.

2. PLACAS

- Purín soltado 45 minutos antes de medición.
- Sensor 3 en bañera sobre pasillo de placas
- Temperatura exterior 20°C

ppm emitidas	7,4	7,4		
Tiempo (horas)	1,167		21:50:23	Inicio
emisiones/dia	152,18509	ppm/día	23:00:23	Fin
Superficie	0,4399	m2	1:10:00	
Vel emisión	345,95	ppm/m2/día	0,167	



Volumen aire	108	l
		Se calcula con el
mg/m3	105,94	peso molecular.
g	0,011441	
EMISIONES	0,02600914108	g/m2/día

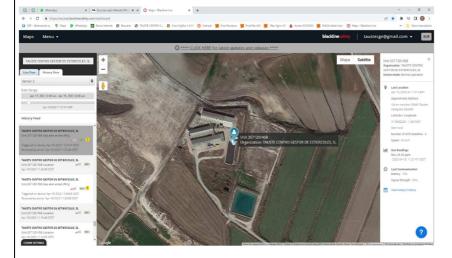
Al estar el sensor sobre los flotadores las emisiones tardan más en salir, por eso se toma el tiempo a partir de que comienzan las emisiones. En función del estado del purín (agitado, recién soltado....), se tomaba un intervalo de tiempo similar pero desplazado hasta que hubiera emisiones medibles.

Para seleccionar los datos se tomaron siempre las mayores emisiones, para estar siempre en el peor caso.

18 abril

3. BALSAS

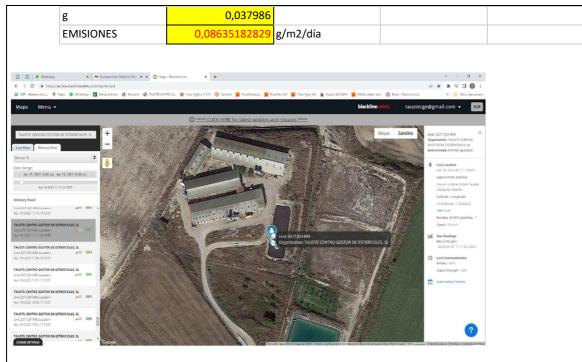
- Purín en agitación
- Sensor 2 sobre purín


	Durante la medición		
	MIN	MAX	MEDIA
T (ºC)	14,2	17,3	21,2
Viento (km/h)	4,9	17	5,4
HR (%)	40,5	53,9	47,3

ppm emitidas	50,7	50,7		
Tiempo (horas)	0,267		10:53:46	inicio
ppm emitidas	50,7		11:09:49	fin
Tiempo (horas)	0,267		0:16:03	

emisiones/dia	4557,303371	ppm/día	0,267	
Superficie	0,4399	m2		
Vel emisión	10359,86	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	3172,43	peso molecular.		
g	0,342622			
EMISIONES	0,7788643838	g/m2/día		

4. **PLACAS**

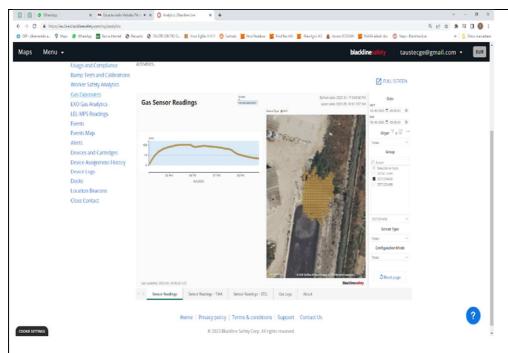

- Purín en agitación Sensor 3 sobre pasillo sobre placas •

	Durante la medición		
	MIN	MAX	MEDIA
T (ºC)	14,2	17,3	21,2
Viento (km/h)	4,9	17	5,4
HR (%)	40,5	53,9	47,3

ppm emitidas	7,2	7,2		
Tiempo (horas)	0,342		12:26:18	Inicio
ppm emitidas	7,2		12:46:47	Fin
Tiempo (horas)	0,342		0:20:29	
emisiones/dia	505,2631579	ppm/día	0,342	
Superficie	0,4399	m2		
Vel emisión	1148,59	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	351,72	peso molecular.		

4 mayo

5. **BALSAS**

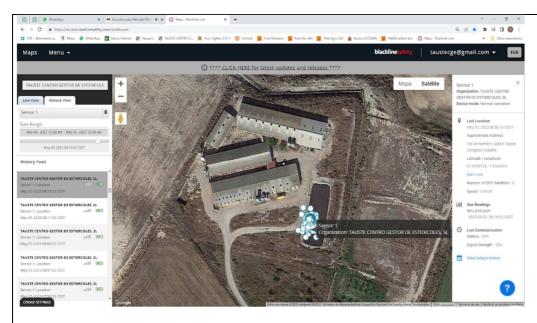

- Sensor 2 sobre purín Se echaron los hexágonos por la mañana para el otro proyecto

	MIN	MAX	MEDIA	INICIAL
T (ºC)	12,4	36,1	20,7	34,1
Viento (km/h)	0	14,4	1,7	0
HR (%)	17,6	80,9	50,6	25,7

ppm emitidas	92	92		
Tiempo (horas)	1,192		4:11:55	Inicio
ppm emitidas	92		5:23:27	Fin
Tiempo (horas)	1,192		1:11:32	
emisiones/dia	1852,348993	ppm/día	0,192	
Superficie	0,4399	m2		
Vel emisión	4210,84	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	1289,46	peso molecular.		
g	0,139261			
EMISIONES	0,3165750752	g/m2/día		

6. PLACAS

Las condiciones eran:


• Sensor 1 sobre pasillos en placas

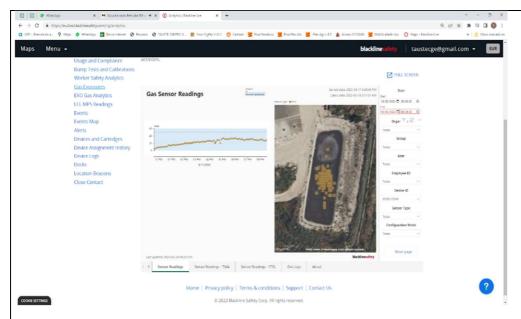
	MIN	MAX	MEDIA	INICIAL
T (ºC)	12,4	36,1	20,7	34,1
Viento (km/h)	0	14,4	1,7	0
HR (%)	17,6	80,9	50,6	25,7

ppm emitidas	12,5	12,5		
Tiempo (horas)	1,25		6:46:53	Inicio
ppm emitidas	12,5		8:01:53	Fin
Tiempo (horas)	1,25		1:15:00	
emisiones/dia	240	ppm/día	0,250	
Superficie	0,4399	m2		
Vel emisión	545,58	ppm/m2/día		
Volumen aire	108	l		
		Se calcula con el		
mg/m3	167,07	peso molecular.		
g	0,018043			
EMISIONES	0,04101711844	g/m2/día		

<u>17 mayo</u>

7. BALSAS

Las condiciones eran:

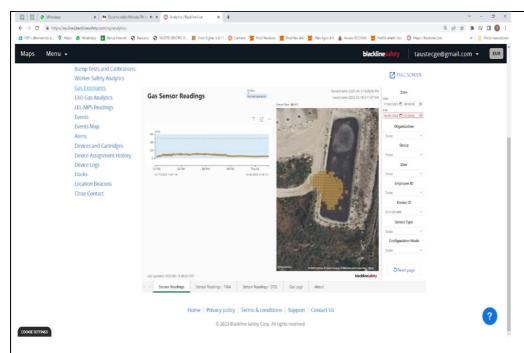

Sensor 1 sobre purín

	MIN	MAX	MEDIA	INICIAL	FINAL
T (ºC)	8,9	24,4	15	19,8	17,7
Viento (km/h)	19,3	47,1	13,7	18	11,3
HR (%)	23,1	69,3	46,5	30,7	34,9

ppm emitidas	29,7	29,7		
Tiempo (horas)	5,417		11:41:11	Inicio
ppm emitidas	29,7		17:06:11	Fin
Tiempo (horas)	5,417		5:25:00	
emisiones/dia	131,5857486	ppm/día	0,417	
Superficie	0,4399	m2		
Vel emisión	299,13	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	91,60	peso molecular.		
g	0,009893			
EMISIONES	0,02248861764	g/m2/día		

8. PLACAS

Las condiciones eran:


• Sensor 3 sobre pasillos en placas

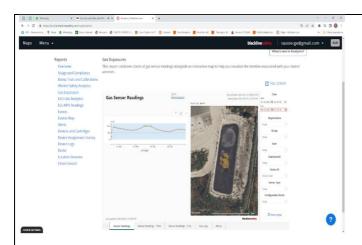
	MIN	MAX	MEDIA	INICIAL	FINAL
T (ºC)	8,9	24,4	15	19,8	17,7
Viento (km/h)	19,3	47,1	13,7	18	11,3
HR (%)	23,1	69,3	46,5	30,7	34,9

ppm emitidas	7,1	7,1		
Tiempo (horas)	4,917		12:01:32	Inicio
ppm emitidas	7,1		16:57:30	Fin
Tiempo (horas)	4,917		4:55:58	
emisiones/dia	34,65527761	ppm/día	0,917	
Superficie	0,4399	m2		
Vel emisión	78,78	ppm/m2/día		
Volumen aire	108	l		
		Se calcula con el		
mg/m3	24,12	peso molecular.		
g	0,002605			
EMISIONES	0,005922748442	g/m2/día		

7 junio

9. BALSAS

Las condiciones eran:

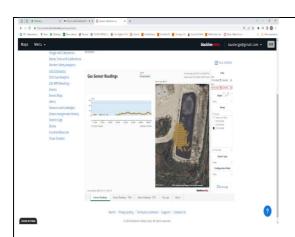

Sensor 1 sobre balsa

	MIN	MAX	MEDIA	INICIAL	FINAL
T (ºC)	16,2	31,3	21	21,5	21,8
Viento (km/h)	0	24,4	3,2	6,5	0
HR (%)	40,1	65	84,8	66,5	66

ppm emitidas	79,2	79,2		
Tiempo (horas)	1,9333		10:33:37	Inicio
ppm emitidas	79,2		12:29:40	Fin
Tiempo (horas)	1,9333		1:56:03	
emisiones/dia	983,1893653	ppm/día	0,933	
Superficie	0,4399	m2		
Vel emisión	2235,03	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	684,42	peso molecular.		
g	0,073917			
EMISIONES	0,1680316443	g/m2/día		

10. PLACAS

Las condiciones eran:


Sensor 3 sobre pasillo en placas

	MIN	MAX	MEDIA	INICIAL	FINAL
T (ºC)	16,2	31,3	21	21,5	21,8
Viento (km/h)	0	24,4	3,2	6,5	0
HR (%)	40,1	65	84,8	66,5	66

ppm emitidas	4,6	4,6		
Tiempo (horas)	10,215		11:35:11	Inicio
ppm emitidas	4,6		21:48:01	Fin
Tiempo (horas)	10,215		10:12:50	
emisiones/dia	10,80763583	ppm/día	0,215	
Superficie	0,4399	m2		
Vel emisión	24,57	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	7,52	peso molecular.		
g	0,000813			
EMISIONES	0,001847075328	g/m2/día		

5 julio

11. BALSAS

Las condiciones eran:

Sensor 2 sobre balsa

Los datos fueron todos cero así que no se tiene en cuenta.

12. PLACAS

Las condiciones eran:

• Sensor 1 sobre placas

	MIN	MAX	MEDIA	INICIAL
T (ºC)	18,1	37,8	24,4	22,7
Viento (km/h)	0	22,4	2,5	10
HR (%)	27,2	84,5	59,1	56,6

ppm emitidas	3,9	3,9		
Tiempo (horas)	2,583		10:29:59	Inicio
ppm emitidas	3,9		13:04:59	Fin
Tiempo (horas)	2,583		2:35:00	
emisiones/dia	36,2369338	ppm/día	0,583	
Superficie	0,4399	m2		
Vel emisión	82,38	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	25,23	peso molecular.		
g	0,002724			
EMISIONES	0,006193060856	g/m2/día		

8 agosto

13. BALSAS

Las condiciones eran:

- Balsa muy llena
- Sensor 2 sobre balsa

	MIN	MAX	MEDIA	INICIAL
T (ºC)	17,9	47,7	29	26,1
Viento (km/h)	0	7,5	0,5	0
HR (%)	16,9	77,3	44,2	53

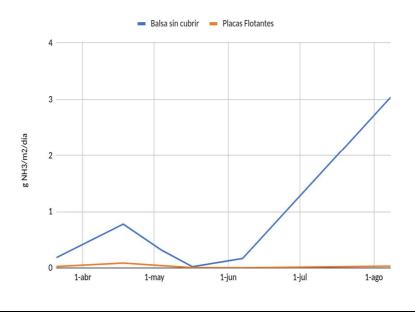
ppm emitidas	80	80		
Tiempo (horas)	0,108		10:31:25	Inicio
ppm emitidas	80		10:38:00	Fin
Tiempo (horas)	0,108		0:06:35	
emisiones/dia	17777,77778	ppm/día	0,108	
Superficie	0,4399	m2		
Vel emisión	40413,23	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	12375,47	peso molecular.		
g	1,336550			
EMISIONES	3,038305069	g/m2/día		

14. PLACAS

- Balsa muy llena
- Sensor 3 sobre placas
- Datos 0 hasta las siete de la tarde

	MIN	MAX	MEDIA	INICIAL
T (ºC)	17,9	47,7	29	26,1
Viento (km/h)	0	7,5	0,5	0
HR (%)	16,9	77,3	44,2	53

ppm emitidas	4	4		
Tiempo (horas)	0,5		10:37:21	Inicio
ppm emitidas	4		11:06:34	Fin
Tiempo (horas)	0,5		0:29:13	


emisiones/dia	192	ppm/día	0,108	
Superficie	0,4399	m2		
Vel emisión	436,46	ppm/m2/día		
Volumen aire	108	I		
		Se calcula con el		
mg/m3	133,66	peso molecular.		
g	0,014435			
EMISIONES	0,03281369475	g/m2/día		

Resumen de los datos

Se comprueba que existe una importante reducción de las emisiones de amoniaco en la zona cubierta con la planta fotovoltaica respecto a la zona de balsa sin cubrir.

Se apuntan a continuación las mediciones de la velocidad de emisión del amoniaco del purín en las dos zonas objeto de estudio:

	g NH3/m2/día			MEDIAS		
Fecha	Balsa sin	Placas	Variación	TºC	HR	Viento
reciia	cubrir	Flotantes	emisiones	I=C	пк	viento
21-mar	0,183	0,026	-85,8%	-	-	-
18-abr	0,779	0,086	-88,9%	17,3	47,3	5,4
4-may	0,317	0,041	-87,0%	20,7	50,6	1,7
17-may	0,022	0,006	-73,7%	15	46,5	13,7
7-jun	0,168	0,002	-98,9%	21	65	3,2
5-jul	-	0,006	-	24,4	59,1	2,5
8-ago	3,038	0,033	-98,9%	29	44,2	0,5

Por otro lado, se hicieron las mediciones con el dron, gracias a la participación de Agrotest, y comparando los resultados de las balsas cubiertas y sin cubrir.

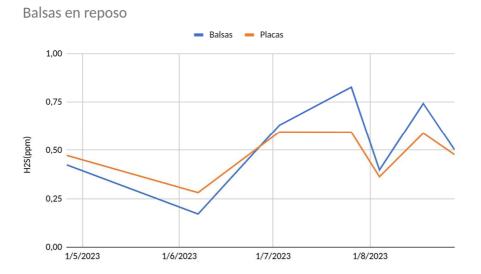
Además, los análisis se realizaron en tres momentos diferentes del estado del purín (soltando a la balsa, reposo y agitación).

Temp(Cº)	Humedad relativa(%)	H2S(ppm)	Estado purín	Zona
11.00	63.51	0,4622	Soltando a balsa	Placas
10.65	65.27	0,4437	Soltando a balsa	Placas
10.41	65.82	0,3923	Soltando a balsa	Placas
10.26	66.56	0,3560	Soltando a balsa	Placas
10.34	66.30	0,4075	Soltando a balsa	Placas
10.35	66.40	0,4552	Soltando a balsa	Balsa
10.27	66.30	0,4215	Soltando a balsa	Balsa
10.35	66.46	0,4832	Soltando a balsa	Balsa
10.33	66.87	0,3873	Soltando a balsa	Balsa
10.26	66.68	0,3616	Soltando a balsa	Balsa
17.20	64.53	0,4866	Reposo	Placas
17.19	64.80	0,4834	Reposo	Placas
17.23	64.75	0,4675	Reposo	Placas
17.20	64.77	0,4855	Reposo	Placas
17.21	64.60	0,4443	Reposo	Placas
17.23	64.72	0,4964	Reposo	Balsa
17.22	64.85	0,4185	Reposo	Balsa
17.21	64.82	0,4152	Reposo	Balsa
17.27	64.81	0,3725	Reposo	Balsa
17.25	64.80	0,4177	Reposo	Balsa
22.38	52.66	1,5562	Agitación	Balsa
22.34	53.03	0,6976	Agitación	Balsa
22.28	53.16	0,9083	Agitación	Balsa
22.23	53.62	0,9006	Agitación	Balsa
22.19	53.96	0,9052	Agitación	Balsa
25.78	45.83	0,9343	Agitación	Placas
25.66	46.56	1,0397	Agitación	Placas
25.49	46.72	0,9904	Agitación	Placas
25.36	47.06	0,8621	Agitación	Placas
25.22	47.20	0,7914	Agitación	Placas
28.71	34.13	1,1861	Agitación	Balsa
29.25	35.08	1,0786	Agitación	Balsa
29.28	36.61	1,0677	Agitación	Balsa
29.31	36.13	0,9738	Agitación	Balsa
29.38	36.51	0,9442	Agitación	Balsa
29.38	36.96	0,4635	Agitación	Placas
29.46	38.17	0,4702	Agitación	Placas
29.52	38.70	0,4572	Agitación	Placas
29.56	38.25	0,4412	Agitación	Placas
29.57	38.26	0,4666	Agitación	Placas
24.38	48.18	0,2564	Reposo	Placas
24.34	48.88	0,2574	Reposo	Placas
24.30	49.41	0,2678	Reposo	Placas

24.29	49.49	0,2984	Reposo	Placas
24.27	49.94	0,3228	Reposo	Placas
23.41	50.78	0,1723	Reposo	Balsa
23.39	51.93	0,1582	Reposo	Balsa
23.36	50.87	0,1702	Reposo	Balsa
23.41	52.41	0,1852	Reposo	Balsa
23.47	51.61	0,1676	Reposo	Balsa
29.08	40.59	2,1642	Soltando a balsa	Balsa
29.18	40.92	2,0845	Soltando a balsa	Balsa
29.37	41.47	1,9163	Soltando a balsa	Balsa
29.40	39.70	1,8164	Soltando a balsa	Balsa
29.38	40.53	1,7161	Soltando a balsa	Balsa
29.38	44.49	0,7376	Soltando a balsa	Placas
29.40	44.22	0,7095	Soltando a balsa	Placas
29.41	44.02	0,7100	Soltando a balsa	Placas
29.44	44.38	0,7547	Soltando a balsa	Placas
29.39	43.74	0,7308	Soltando a balsa	Placas
27.23	40.20	0,6741	Reposo	Balsa
27.29	40.23	0,6420	Reposo	Balsa
27.30	40.27	0,5907	Reposo	Balsa
27.31	40.27	0,6437	Reposo	Balsa
27.29	40.31	0,5994	Reposo	Balsa
_	40.23		· ·	+
27.31		0,6164	Reposo	Placas
27.35	40.40	0,5943	Reposo	Placas
27.32	41.01	0,5717	Reposo	Placas
27.31	40.93	0,6300	Reposo	Placas
27.35	41.13	0,5619	Reposo	Placas
29.41	40.09	1,5671	Agitación	Balsa
29.22	39.41	1,5199	Agitación	Balsa
29.35	39.09	1,4518	Agitación	Balsa
29.26	40.28	1,2629	Agitación	Balsa
29.33	39.89	1,2380	Agitación	Balsa
29.52	39.22	1,1980	Agitación	Placas
29.55	39.25	1,1762	Agitación	Placas
29.63	39.85	1,0298	Agitación	Placas
29.74	40.10	0,9982	Agitación	Placas
29.83	40.94	1,0054	Agitación -	Placas
33.00	42.03	0,9654	Reposo	Balsa
33.11	38.71	0,8886	Reposo	Balsa
33.21	40.48	0,8772	Reposo	Balsa
33.35	43.72	0,7049	Reposo	Balsa
33.37	44.90	0,6997	Reposo	Balsa
33.42	44.26	0,6898	Reposo	Placas
33.42	43.68	0,6638	Reposo	Placas
33.44	43.17	0,6384	Reposo	Placas
32.83	43.58	0,4718	Reposo	Placas
32.88	44.02	0,5045	Reposo	Placas
33.31	44.49	1,2156	Reposo	Balsa
33.36	44.22	0,4279	Reposo	Balsa
33.36	44.02	0,3366	Reposo	Balsa
33.34	44.38	0,3962	Reposo	Balsa

33.35	43.74	0,4290	Reposo	Balsa
33.52	43.65	0,3639	Reposo	Placas
33.31	43.70	0,3456	Reposo	Placas
33.33	43.66	0,4134	Reposo	Placas
33.35	43.40	0,3400	Reposo	Placas
33.40	44.01	0,3510	Reposo	Placas
35.29	45.83	0,7534	Reposo	Balsa
35.06	46.56	0,7648	Reposo	Balsa
35.22	46.72	0,7613	Reposo	Balsa
35.11	47.06	0,7382	Reposo	Balsa
35.19	47.20	0,6938	Reposo	Balsa
35.42	46.80	0,5991	Reposo	Placas
35.46	46.95	0,5853	Reposo	Placas
35.55	46.85	0,5572	Reposo	Placas
35.56	46.81	0,6120	Reposo	Placas
35.60	46.88	0,5851	Reposo	Placas
32.93	44.19	0,5429	Reposo	Balsa
32.98	44.43	0,5304	Reposo	Balsa
33.05	43.67	0,4375	Reposo	Balsa
33.07	44.43	0,5081	Reposo	Balsa
33.10	44.45	0,4910	Reposo	Balsa
33.14	44.84	0,4868	Reposo	Placas
33.16	43.95	0,4640	Reposo	Placas
33.19	45.41	0,4827	Reposo	Placas
33.20	44.17	0,4702	Reposo	Placas
33.20	44.17	0,4800	Reposo	Placas

Analizando los datos por separado y extrayendo las medias de los resultados se obtiene lo siguiente:


Fecha medida	Temp(Cº)	Humedad relativa(%)	H2S(ppm)	Estado purín	Zona
12/4/2023	10,26 - 10,35	66,30 - 66,87	0,422	SaB	Balsa
12/4/2023	10,26 - 11,00	63,51 - 66,56	0,412	SaB	Placas
19/6/2023	29,18 - 29,40	39,70 - 41,47	1,883	SaB	Balsa
19/6/2023	29,38 - 29,44	43,74 - 44,49	0,729	SaB	Placas
26/4/2023	17,21 - 17,27	64,72 - 64,85	0,424	Reposo	Balsas
26/4/2023	17,19 - 17,23	64,53 - 64,80	0,473	Reposo	Placas
7/6/2023	23,36 - 23,47	50,78 - 52,41	0,171	Reposo	Balsas
7/6/2023	24,27 - 24,38	48,18 - 49,94	0,281	Reposo	Placas
3/7/2023	27,23 - 27,31	40,20 - 40,31	0,630	Reposo	Balsas
3/7/2023	27,31 - 27,35	40,33 - 41,13	0,595	Reposo	Placas
26/7/2023	33,00 - 33,37	38,71 - 44,90	0,827	Reposo	Balsas
26/7/2023	32,83 - 33,44	43,17 - 44,26	0,594	Reposo	Placas
4/8/2023	33,34 - 33,36	43,74 - 44,49	0,398	Reposo	Balsas
4/8/2023	33,31 - 33,52	43,40 - 44,01	0,363	Reposo	Placas
18/8/2023	35,06 - 35,29	45,83 - 47,20	0,742	Reposo	Balsas
18/8/2023	35,42 - 35,60	46,80 - 46,95	0,588	Reposo	Placas

28/8/2023	32,93 - 33,10	43,67 - 44,55	0,502	Reposo	Balsas
28/8/2023	33,14 - 33,20	43,95 - 45,41	0,477	Reposo	Placas
10/5/2023	22,19 - 22,38	52,66 - 53,96	0,994	Agitación	Balsa
10/5/2023	25,22 - 25,78	45,83 - 47,20	0,924	Agitación	Placas
24/5/2023	28,71 - 29,38	34,13 - 36,61	1,050	Agitación	Balsa
24/5/2023	29,38 - 29,57	36,96 - 38,70	0,460	Agitación	Placas
14/7/2023	29,22 - 29,41	39,09 - 40,28	1,408	Agitación	Balsa
14/7/2023	29,52 - 29,83	39,22 - 40,94	1,082	Agitación	Placas

SaB= Soltando a Balsa

Por último, paralelamente también se tomaron muestras de purín en diferentes fechas a lo largo del periodo de prueba y recogiendo muestra tanto de la balsa abierta como de la zona cubierta. Todas los 50 análisis realizados se presentan en el Anexo II. Análticas purín.

Las medias de los resultados se presentan a continuación:

Fecha de análisis		Conducti vidad electrica (mS/cm)	N total Kjendal (%)	N total Kjendal (kg/m3)	Nitrógen o amoniac al (%)	Nitrógen o amoniac al (kg/m3)	Fósforo total (P2O5) (%)	Fósforo total (P2O5) (kg/m3)	Potasio (K2O) (%)	Potasio (K2O) (kg/m3)
INICIO-	BALSA	12,90	0,162		0,138		0,024		0,215	
1ª MEDIDA	PLACAS	12,76	0,167		0,133		0,036		0,179	
2ª MEDIDA	BALSA	11,95	0,160		0,133		0,024		0,202	
	PLACAS	12,10	0,154		0,139		0,037		0,193	
3ª MEDIDA	BALSA	11,14	0,133	1,360	0,115	1,180	0,024	0,250	0,161	1,650
	PLACAS	11,40	0,133	1,360	0,116	1,190	0,031	0,320	0,175	1,790
FINAL- 4ª MEDIDA	BALSA	10,30	0,12	1,230	0,105	1,080	0,019	0,190	0,205	2,100
	PLACAS	11,40	0,130	1,330	0,115	1,180	0,019	0,190	0,184	1,890

Según estos resultados, se observa menor concentración de amoniaco, fósforo y potasio en las balsas sin cubrir respecto a las zonas cubiertas, además de que en ambas se reducen las concentraciones (especialmente en las zonas sin cubrir) conforme aumentan las temperaturas. Esto va en concordancia con los resultados anteriores que indican una reducción de las emisiones de amoniaco en la zona cubierta con la planta fotovoltaica respecto a la zona de balsa sin cubrir, por lo que al emitirse menos es lógico que la concentración aumente en el purín.

Desmontaje del prototipo demostrativo

A la vista de los resultados que se han ido obteniendo durante el funcionamiento del prototipo, se decide retirarlo de la balsa.

De esta manera se puede hacer una inspección visual completa de la degradación de los materiales y tomar muestras. Las muestras que se han guardado de elementos oxidados y los flotadores de plástico, se enviarán a Isigenere, quien ha mostrado interés en analizar de forma independiente dichas muestras.

Por otra parte, es necesario mencionar que para mantener en funcionamiento y en regla una instalación fotovoltaica sobre una balsa de purines, es necesario acreditar de forma oficial que no existe ningún problema de inflamación o explosión a causa de las emisiones de metano y su interacción con elementos eléctricos. Para ello hace falta tomar mediciones de metano durante un periodo mínimo de un año y llevar a cabo una evaluación de la atmósfera explosiva. Durante el transcurso de este proyecto no se ha podido sacar una conclusión definitiva. Por ello, se hace necesario llevar a cabo más estudios antes de desestimar problemas por metano y dar por validada la solución.

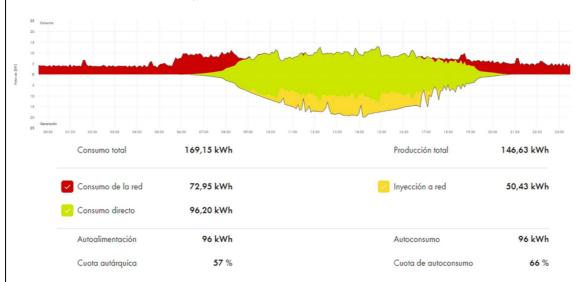
Estudio de rentabilidad económica

Coste total de la instalación de 20,7 kWp:

Paneles FV, inversor y accesorios	9.027,89€			
Pequeño material eléctrico, cableado, tubos, protecciones, etc.	1.440,47€			
Sistema de flotadores para fotovoltaica	15.904,64€			
Obra civil	950,37€			
Mano de obra montaje	3.254,17€			
Total	30.577,54€			

Producción anual esperada: 30.732 kWh (producción teórica) x (-3,8%) de desviación = 29.576 kWh/año.

Porcentaje de consumo directo: 34,6%. El resto de la producción que no se autoconsumo en el momento, se inyecta a la red. Esto quiere decir que, de la producción fotovoltaica total, 10.233 kWh se emplean directamente para cubrir los consumos de la granja en un año. Los 19.343 kWh restantes se devuelven a la red eléctrica.


Suponiendo un coste medio de 18 cts. el kWh, con el porcentaje de autoconsumo directo se consiguen ahorrar unos 1.842€, lo que supone el 14% de la factura eléctrica. Además, suponiendo un valor medio de 6 cts. el kWh inyectado a red, con la compensación de excedentes se consigue ahorrar en la factura unos 3.482€.

En total, el sistema fotovoltaico, acogido a la modalidad de autoconsumo con compensación de excedentes, supone un ahorro total del 41% en la factura eléctrica.

Ejemplo de gráfica de balance energético de la planta fotovoltaica, obtenida del portal de monitorización del inversor. Día 18/05/2023. En este caso, el autoconsumo directo cubrió el 57% de los consumos eléctricos de la granja para este día, mientras que los excedentes producidos principalmente en las horas centrales del día, que no se pudieron aprovechar, se vertieron a la red.

Objetivos alcanzados (si no se han alcanzado los objetivos esperados, indicarlo):

Los objetivos se han alcanzado con éxito y se han realizado todas las tareas que estaban previstas en el proyecto.

Gracias al proyecto y al prototipo desarrollado se ha conseguido superar el 40% de reducción de emisiones de NH₃ en la zona cubierta frente a la zona sin cubrir, lo que sería suficiente para que una granja existente pudiese cumplir con la normativa de reducción de emisiones.

Sin embargo, se hacen notar algunas limitaciones frente al método de medición empleado: durante el proyecto se han encontrado dificultades con los sensores de amoniaco, ya que en un comienzo el sensor empleado no medía con suficiente sensibilidad; además, se deberían tomar mediciones durante un periodo de tiempo mayor (durante un periodo cálido, verano, y otro frío, invierno) para poder evaluar de manera adecuada la reducción de emisiones.

Paralelamente, durante el tiempo de funcionamiento, el prototipo demostrativo ha producido un total de 23.371,25 kWh, de los cuales, el 83,5% se ha empleado en cubrir directamente la demanda de la granja, mientras que el 16,5 restante se ha inyectado a la red. Estos excedentes, si la granja se acogiera a modalidad de autoconsumo con compensación, podrían producir un ahorro en su factura eléctrica.

Además, se ha demostrado la facilidad del mantenimiento del prototipo, para mantener la limpieza de los paneles, es sólo necesario limpiarlos con agua a no elevada presión, o bien limpieza con agua con jabón subiéndose a la plataforma. Sí es verdad que se han llegado a oxidar algunos materiales como tornillos, tuercas

y conectores de los latiguillos de tierra entre paneles. Pero los pernos empleados para unir los paneles a los flotadores, a través de grapas, se han mantenido sin oxidarse, ya que el material es aluminio.

Descripción de los potenciales beneficiarios de los objetivos alcanzados (p.e.: regantes, ganaderos de ovino, industrias conserveras...):

El principal destinatario del proyecto es el sector porcino localizado en la comarca de las Cinco Villas y dentro de él se pueden distinguir dos colectivos que son los principales beneficiarios del proyecto. Por un lado, las Granjas y las Explotaciones Porcinas y por otro, los Centros Gestores de Purines.

Este grupo de beneficiarios se ha alcanzado primero en la comarca de las Cinco Villas y posteriormente en todas las explotaciones de porcino de Aragón, que en 2022 ascendía a 9,2 millones de cerdos y 4573 explotaciones. Conforme el proyecto se ha ido desarrollando, las acciones de divulgación que se han llevado a cabo se han centrado en dar a conocer los resultados de los distintos planes estratégicos preventivos para que todas las explotaciones a nivel nacional puedan adoptar estos planes en sus instalaciones y explotaciones. Esto supone que el número final de explotaciones que pueden ser destinatarias del proyecto una vez transcurridos puede alcanzar la totalidad del censo nacional.

Cabe destacar el beneficio también por parte del agricultor, ya que, al lograr emitir menos nitrógeno a la atmósfera por la cubrición de las balsas, este purín será más rico en dicho nutriente, pudiendo disminuir las dosis de aplicación en función de la concentración del nitrógeno en el purín.

Conclusiones del proyecto (éxito o fracaso del proyecto y motivos, si es aplicable en el sector al que va dirigido, si debe tener continuidad, etc.):

Aunque se desmontó finalmente la instalación flotante, consideramos que el proyecto ha sido un éxito, ya que se han obtenido unos resultados que dan pie a poder continuar con el estudio en un futuro, ampliándolo a otro tipo de situaciones y tomando un protocolo de mediciones más preciso, teniendo acceso a un mayor presupuesto, como por ejemplo lo que marca el protocolo VERA (*Verification of environmental technologies for agricultural production*), para, de esta forma, comprobar la reducción de emisiones de una forma más acotada.

Indicar los medios de divulgación de los resultados obtenidos (publicaciones, manual de buenas prácticas, recomendaciones, folletos divulgativos, página web u otros):

-<u>Presentación en las III Jornadas de Innovación en el sector porcino de Aragón, organizado por la ADS Porcino №1 de Tauste e Inneara</u>.

Fecha: 25/10/2022

Se realizó una presentación para dar a conocer los objetivos del proyecto y los avances llevados a cabo hasta el momento: se explicó la prueba de flotabilidad en piscina y el dimensionamiento del prototipo demostrativo.

Artículo en revista divulgativa PV Magazine

Fecha de publicación 22/11/2022

https://www.pv-magazine.es/2022/11/22/fotovoltaica-flotante-para-reducir-las-emisiones-de-amoniaco-enzaragoza/

Artículo en revista divulgativa xataka.com

Fecha de publicación 26/11/2022

 $\underline{\text{https://www.xataka.com/energia/balsas-purines-problema-publico-zaragoza-tiene-solucion-cubrirlas-placas-solares}$

Artículo en el Heraldo de Aragón

 $\color{red} \bullet \underline{ \text{https://www.heraldo.es/branded/una-solucion-eficaz-para-cubrir-las-balsas-de-purines-de-formasostenible/} \\$

En Tauste, a fecha de la firma electrónica

Firmado: LA PERSONA COORDINADORA

DIRECTORA GENERAL DE DESARROLLO RURAL