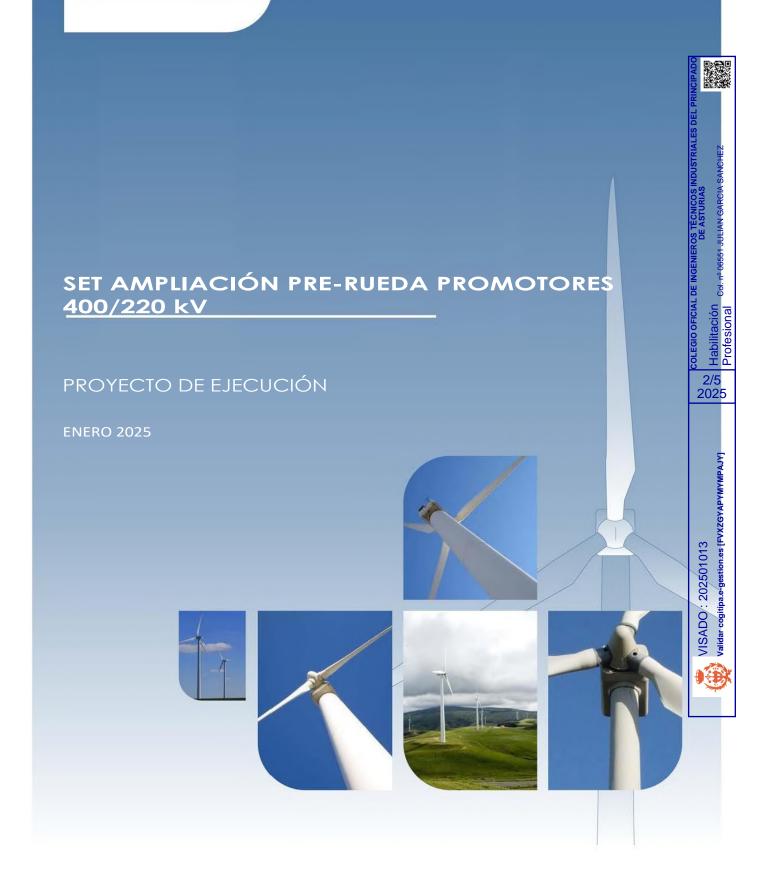


ILUSTRE COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL

PRINCIPADO DE ASTURIAS

Plantilla de firmas electrónicas

Firma Colegiado 1	Firma Colegiado 2
Firma Colegiado 3	Firma Colegiado 4
Firma Institución/Colegio 1	Firma Institución/Colegio 2
Firma Institución/Colegio 3	Firma Institución/Colegio 4


ILUSTRE COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL

PRINCIPADO DE ASTURIAS

Plantilla de firmas electrónicas

Firma Colegiado 1	Firma Colegiado 2
Firma Colegiado 3	Firma Colegiado 4
Firma Institución/Colegio 1	Firma Institución/Colegio 2
Firma Institución/Colegio 3	Firma Institución/Colegio 4

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Índice General

Enero 2025

ÍNDICE GENERAL

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE GENERAL

- **DOCUMENTO Nº 01: MEMORIA**
 - ANEXO Nº 01: CÁLCULOS JUSTIFICATIVOS
 - ANEXO Nº 02: ESTUDIO GESTIÓN DE RESIDUOS
 - ANEXO Nº 03: ESTUDIO DE CAMPOS MAGNÉTICOS
 - ANEXO Nº 04: RELACIÓN DE BIENES Y DERECHOS AFECTADOS
- **DOCUMENTO N° 02: PRESUPUESTO**
- **DOCUMENTO Nº 03: PLANOS**
- DOCUMENTO Nº 04: ESTUDIO DE SEGURIDAD Y SALUD
- **DOCUMENTO Nº 05: PLIEGO DE CONDICIONES**

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Documento 01: Memoria Enero 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE

1.		DENTES Y FINALIDAD DE LA INSTALACIÓN			
2.	OBJETO)	6	PADO	7 0
3.	PROMO	TOR Y TITULAR DE LA INSTALACIÓN	7	PRINC	
4.	LEGISLA	ACIÓN Y NORMATIVA APLICABLE	8	ES DEL	
4	4.1. NC	DRMATIVA ESTATAL	8	STRIAL	ICHEZ
4	1.2. NC	DTOR Y TITULAR DE LA INSTALACIÓN ACIÓN Y NORMATIVA APLICABLE DRMATIVA ESTATAL DRMATIVA AUTONÓMICA Y LOCAL DDIGOS Y NORMAS	9	OS INDU	CIA SAN
4	4.3. CĆ	DDIGOS Y NORMAS	9	TÉCNICA	AN GAR
5.	EMPLAZ	AMIENTO DE LA INSTALACIÓN	10	IEROS . DE	551 JULI
6.	DESCRI	PCIÓN DE LA INSTALACIÓN	11	E INGEN	Col. nº 06551 JULIAN GARCIA SANCHEZ
ć	5.1. CA	MRACTERÍSTICAS GENERALES DE LA INSTALACIÓN	11	ICIAL DI	_
ć	3.2. SIS	TEMA ELÉCTRICO	11	GIOOF	Habilitaciór Profesional
	6.2.1.	MAGNITUDES ELÉCTRICAS	11	COLE	15 15
	6.2.2.	DISTANCIAS DE SEGURIDAD			
	6.2.3.	TENDIDOS DE POSICIÓN	14		
	6.2.3.	1. PIEZAS DE CONEXIÓN	14		AJY]
	6.2.4.	CARACTERÍSTICAS DE LA APARAMENTA	14		ogitipa.e-gestion.es [FVXZGYAPYMYMPAJY]
	6.2.4.	1. SISTEMA DE 220 KV	14		(ZGY AP
	6.2	.4.1.1. INTERRUPTOR AUTOMÁTICO	15	013	es [FV)
	6.2	.4.1.2. SECCIONADOR TRIPOLAR	15	202501013	-gestion
	6.2	.4.1.3. TRANSFORMADORES DE INTENSIDAD	16	DO : 20	ogitipa.e
	6.2	.4.1.4. TRANSFORMADORES DE TENSIÓN	17	ISAD	Validar co
	6.2	.4.1.5. PARARRAYOS AUTOVÁLVULA	18		
ć	3.3. REI	D DE TIERRAS	18	***	
	6.3.1.	RED DE TIERRAS INFERIORES	18		
	6.3.2.	RED DE TIERRAS SUPERIORES	18		
ć	5.4. EST	RUCTURAS METÁLICAS	19		
	6.4.1.	CARACTERÍSTICAS GENERALES ESTRUCTURA METÁLICA	19		
	6.4.2.	ESTRUCTURA METÁLICA NECESARIA EN LA INSTALACIÓN	20		

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 2

Habilitación co. nº 06551 JULIAN GARCIA SANCHEZ Profesional

6.5. SISTEMAS DE CONTROL Y PROTECCIÓN	.20	
6.5.1. SISTEMA DE CONTROL	.20	
6.5.2. SISTEMA DE PROTECCIONES	.21	
6.5.3. LÍNEA 220 KV	.21	IINCIPA
6.6. SERVICIOS AUXILIARES		
6.6.1. SERVICIOS AUXILIARES DE CORRIENTE ALTERNA	.22	RIALES
6.6.1. SERVICIOS AUXILIARES DE CORRIENTE ALTERNA	.22	SANCH
6.7. SISTEMA DE TELECOMUNICACIONES	- 10	TURIAS
6.7.1. TELECOMUNICACIONES PARA FUNCIONES DE PROTECCIÓN	.22	NGENIEROS TECNICOS INDUSTRIA DE ASTURIAS nº 06551 JULIAN GARCIA SANCHEZ
6.7.2. RED DE FIBRA ÓPTICA EN LA SUBESTACIÓN	.22	GENIER • 06551
	DE	
COMUNICACIONES.	.23	OFICIA ación
6.8. MEDIDA DE ENERGÍA	.23	OLEGIU Habilit
6.9. OBRA CIVIL	.23	2/5 2025
6.9.1. MOVIMIENTO DE TIERRAS	.23	2025
6.9.2. URBANIZACIÓN	.23	
6.9.3. ACCESOS Y VIALES	.24	MPAJY]
6.9.4. EDIFICIO DE CONTROL	.24	APYMYI
6.9.5. CIMENTACIONES DEL APARELLAJE ELÉCTRICO DE LA SUBESTACIÓN	.24	'VXZGY,
6.9.6. RED DE DRENAJE	.25	01013
6.9.7. CANALIZACIONES Y CANALES DE CABLES	.25	
6.9.8. CIERRE PERIMETRAL	.25	DO: 2025
6.10. INSTALACIÓN DE ALUMBRADO Y FUERZA	.26	VISA
6.10.1. ALUMBRADO	.26	1
6.10.1.1. ALUMBRADO EXTERIOR	.26	
6.10.1.2. ALUMBRADO INTERIOR	.26	
6.10.2. FUERZA	.26	
6.11. SISTEMA CONTRAINCENDIOS Y ANTIINTRUSISMO	.26	
6.11.1. SISTEMA CONTRAINCENDIOS	.26	
6.11.1.1. DETECCIÓN Y SISTEMA DE ALARMA	.26	

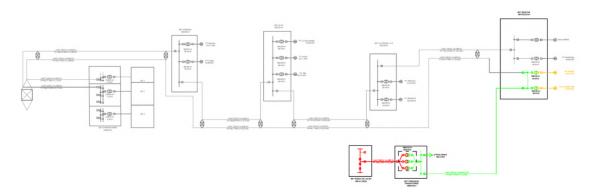
novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 3

8	CONCLUSIÓ	N	29
7.	PLAZO DE EJ	ECUCIÓN Y CRONOGRAMA	28
	6.11.2. SIS	tema antiintrusismo	27
	6.11.1.3.	EXTINTORES	27
	6.11.1.2.	SEÑALIZACIÓN DE EVACUACIÓN Y MÉTODOS DE PROTECCIÓN	26

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV


Página 4

1. ANTECEDENTES Y FINALIDAD DE LA INSTALACIÓN

QUANTUM GLOBAL ASSETS S.L.U es una sociedad que promociona y desarrolla proyectos de energías renovables en toda España y más particularmente en la Comunidad Autónoma de Aragón. Desarrolla, a través de sus filiales "EMPECINADO I ENERGY S.L.U" y "EL EMPECINADO TWO ENERGY S.L.U", los parques eólicos "Graitas" de 36,42 MW y "La Media Villa" de 30,35 MW respectivamente, ubicados en los términos municipales de Épila y Ricla (provincia de Zaragoza). Estos parques eólicos cuentan con acceso y conexión en modalidad autoconsumo con conexión en posición de generación de la red de transporte en la subestación Rueda de Jalón 400 (REE), que permitirán tanto evacuar la energía a la red de transporte como alimentar a la futura instalación de consumo "Campus Ebro".

La evacuación de los parques eólicos Graitas y La Media Villa comprende las siguientes infraestructuras:

- La subestación eléctrica Graitas 30/220 kV.
- La ampliación de la subestación eléctrica Pre-Rueda Promotores 400/220 kV. (Objeto de este proyecto)
- La línea aérea 220 kV SET Graitas SET Ampliación Pre-Rueda Promotores.

Siendo que estos dos parques se ubican en parajes cercanos, se proyectan infraestructuras comunes de evacuación, como la "Ampliación SET Pre-Rueda Promotores 400/220 kV", al objeto de aprovechar sinergias y así minimizar el posible impacto ambiental que se generaría en el caso de tener que ejecutar infraestructuras de evacuación de forma independiente para cada una de las instalaciones.

Esta subestación eléctrica Pre-Rueda (ya existente) recoge también la energía proveniente del resto de proyectos con conexión otorgada en el nudo para verter la energía en la subestación de la red de transporte "Rueda de Jalón 400" a través de una línea de evacuación. Tanto dicha línea de evacuación como la infraestructura de conexión compartida con el resto de promotores ya han sido autorizadas.

Habilitación Profesional

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 5

A esta "Ampliación SET Pre-Rueda Promotores 400/220 kV" tiene llegada una línea de 220 kV denominada "LAAT 220 kV SET Graitas – SET Ampliación Pre-Rueda Promotores 400/220 kV" que parte desde la "SET Graitas 30/220 kV" y que evacuará la energía excedentaria de los mencionados parques eólicos "Graitas" y "La Media Villa". Tanto dicha subestación eléctrica como la línea de evacuación serán objeto de otros proyectos.

En la línea de lo anteriormente expuesto, la propuesta de realización de infraestructuras comunes de evacuación para varias instalaciones tiene una serie de ventajas, que quedan resumidas a continuación:

- Se reducen sustancialmente las infraestructuras de nueva construcción, tanto líneas eléctricas como subestaciones, al aplicar el criterio de utilizar, en la medida de lo posible, una misma instalación de evacuación para varias instalaciones.
- Se tiene un menor coste de inversión inicial, tanto en el volumen general como en la inversión individual por instalación.
- Así mismo, minimiza los costes de mantenimiento posterior de las instalaciones.
- Se minimizan las pérdidas de energía, optimizando el aprovechamiento de los recursos naturales.
- Facilita la tramitación administrativa de las infraestructuras al tratarse de una sola instalación a legalizar.
- Maximiza el aprovechamiento de las infraestructuras de conexión a la red de transporte ya
- Implica un menor impacto ambiental y una mayor receptividad social hacia las infraestructuras a construir.

Por todo ello, y en línea con la positiva valoración que la administración tiene de estas soluciones conjuntas, se ha optado por ella en detrimento de proyectar infraestructuras individuales de la energía generada por cada parque.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 6

2. OBJETO

El objeto del presente proyecto "Ampliación SET Pre-Rueda Promotores 400/220kV", ubicada en el término municipal de Rueda de Jalón (provincia de Zaragoza), es definir la infraestructura eléctrica necesaria para la evacuación de la energía generada por los parques eólicos "Graitas" y "La Media Villa" que están proyectados en la zona.

El Proyecto consiste en la definición de la ampliación de una subestación eléctrica de transformación para la evacuación a la red de transporte de la energía generada por los nuevos parques eólicos proyectados, objeto de otros proyectos.

Para la evacuación de los nuevos parques eólicos, se proyecta una ampliación de la subestación existente "Pre-Rueda" con transformación 400/220 kV.

La energía excedentaria producida por los parques "Graitas" y "La Media Villa", y recogida por la subestación Pre-Rueda, se evacúa a través de la línea de 220 kV "LAAT 220 kV SET Graitas – SET Ampliación Pre-Rueda Promotores 400/220 kV", objeto de otro proyecto.

Los niveles de tensión de la subestación son 400 kV (posición de línea-transformador de salida a SET Rueda de Jalón 400), y 220 kV (posición de línea de entrada y embarrado). En el proyecto de la subestación se incluyen las instalaciones y servicios auxiliares necesarios para su correcto funcionamiento.

Todas las obras que aquí se definen, se proyectan adaptándose a los Reglamentos Técnicos vigentes y demás normas reguladoras de este tipo de instalaciones, en particular el R.D. 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23.

Habilitación Profesional

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 7

3. PROMOTOR Y TITULAR DE LA INSTALACIÓN

Las entidades promotoras de la instalación objeto del presente Proyecto son las siguientes sociedades mercantiles:

EMPECINADO I ENERGY S.L.U.

CIF B88442652

Paseo Club Deportivo 1, edificio 13

28223 Pozuelo de Alarcón, Madrid (España)

Col. nº 06551 JULIAN GARCIA SANCHEZ

2/5 2025

Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY] VISADO: 202501013

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 8

4. LEGISLACIÓN Y NORMATIVA APLICABLE

El Proyecto de Ejecución ha sido redactado de acuerdo a lo preceptuado en lasiguiente Normativa y Reglamentación de Instalaciones de Alta Tensión:

4.1. NORMATIVA ESTATAL

- Ley 24/2013 de 26 de diciembre, del Sector Eléctrico (B.O.E. 27 de diciembre de 2013).
- Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica (B.O.E. de 27 de diciembre de 2000).
- Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09 (Aprobado por Real Decreto 223/2008, de 15 de febrero B.O.E. núm. 68 de 19 de marzo de 2008).
- Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC - RAT 01 a 23 (Aprobado por Real Decreto 337/2014, de 9 de mayo. B.O.E. 9-06-14).
- Reglamento Electrotécnico para Baja Tensión y sus instrucciones técnicas complementarias (ITC) BT 01 a BT 51. Aprobado por Real Decreto 842/2002, de 2 de agosto, del Ministerio de Ciencia y Tecnología (B.O.E. de 18-09-2002).
- Real Decreto 1048/2013, de 27 de diciembre, por el que se establece la metodología para el cálculo de la retribución de la actividad de distribución de energía eléctrica.
- Ley 21/2013, de 9 de diciembre, de Evaluación Ambiental.
- Real Decreto 9/2005, de 14 de enero, por el que se establece la relación de actividades potencialmente contaminantes del suelo y los criterios y estándares para la declaración de suelos contaminados.
- Ley 37/2003, de 17 de noviembre, del Ruido. Real Decreto 1513/2005, de 16 de diciembre, por el que se desarrolla la Ley 37/2003, de 17 de noviembre, del Ruido, en lo referente a la evaluación y gestión del ruido ambiental.
- Real Decreto 1367/2007, de 19 de octubre, por el que se desarrolla la Ley 37/2003, de 17 de noviembre, del Ruido, en lo referente a zonificación acústica, objetivos de calidad y emisiones acústicas.
- Real Decreto 1038/2012, de 6 de julio, por el que se modifica el Real Decreto 1367/2007, de 19 de octubre, por el que se desarrolla la Ley 37/2003, de 17 de noviembre, del ruido, en lo referente a zonificación acústica, objetivos de calidad y emisiones acústicas.
- Reglamento de Instalaciones de Protección Contra Incendios (RIPCI), aprobado por Real Decreto 1942/1993, y Orden de 16 de abril de 1998 sobre Normas de Procedimiento y Desarrollo del mismo.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 9

- Reglamento de Seguridad Contra Incendios en los Establecimientos Industriales (RSCIEI), aprobado por Real Decreto 2267/2004.
- Normas UNE de obligado cumplimiento.
- Código Técnico de la Edificación (CTE), aprobado por Real Decreto 314/2006.
- Condicionados que puedan ser emitidos por Organismos afectados por las instalaciones.

La normativa descrita se enmarca en la legislación básica del Estado, correspondiendo a las comunidades autónomas en el ejercicio de sus competencias el desarrollo del marco normativo aplicable a las instalaciones eléctricas que les corresponda autorizar.

4.2. NORMATIVA AUTONÓMICA Y LOCAL

Condicionados que puedan ser emitidos por Organismos afectados por las instalaciones.

4.3. CÓDIGOS Y NORMAS

La aparamenta y equipos asociados serán diseñados, construidos, probados, ensayados y montados de acuerdo con:

- CEI 480 Guía para la prueba del gas SF6 empleado en equipos eléctricos.
- CEI 694Cláusulas comunes para las normas de aparamenta de AT.
- CEI 56Interruptores de AT.
- CEI 129Seccionadores de c.a. y seccionadores de puesta a tierra.
- CEI 185Transformadores de intensidad.
- CEI 186Transformadores de tensión.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 10

5. EMPLAZAMIENTO DE LA INSTALACIÓN

La Subestación SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV estará ubicada en el Término Municipal de Rueda de Jalón, Provincia de Zaragoza. Ocupa una superficie total aproximada de 10.005 m² y las coordenadas aproximadas de los vértices del cerramiento son (ETRS 89 HUSO 30):

Vértice	Coordenada X	Coordenada Y
Α	642.333	4.612.044
В	642.363	4.612.116
С	642.290	4.612.147
D	642.218	4.612.138
E	642.202	4.612.099

Los datos catastrales asociados al emplazamiento de la subestación se recogen en la tabla mostrada a continuación:

Municipio	Provincia	Ref. Catastral	Polígono	Parcela
Rueda de Jalón	Zaragoza	50230A031000070000YW	31	7

Se adaptará el vial de acceso a la ampliación de la subestación, realizando labores de adecuación de vial en los viales existentes y planteando el tramo del nuevo vial que conduce al segundo acceso de vehículos de la subestación.

El emplazamiento y acceso de la instalación quedan recogidos en los planos de situación y ubicación adjuntos, en el Documento 03 "Planos" del presente proyecto. En el mismo documento se incluyen un plano catastral y un plano de interconexión con las instalaciones de transporte y distribución adyacentes.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 11

6. DESCRIPCIÓN DE LA INSTALACIÓN

La SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV constará de las instalaciones que a continuación se describen, según puede verse en el esquema unifilar y en los planos de implantación recogidos en el Documento 03 "Planos" del presente proyecto.

El objeto del presente proyecto consiste en la ampliación del embarrado existente de 220 kV en un vano y la adición de una posición de línea de 220 kV.

6.1. Características Generales de la Instalación

La subestación SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV está situada en el Término Municipal de Rueda de Jalón, Provincia de Zaragoza.

Atendiendo a las características ambientales del emplazamiento seleccionado, esta instalación se realiza con tecnología convencional con aislamiento en aire, con una posición de línea que requiere de la ampliación del embarrado existente en la SET PRE-RUEDA PROMOTORES ya construida.

Las condiciones ambientales del emplazamiento son las siguientes:

- Altura media sobre el nivel del mar: +310 msnm
- Tipo de Zona: A (Según R. L. A. T.)
- Temperaturas extremas: -5°C /+40°C
- Contaminación ambiental: Il Fuerte.
- Nivel de aislamiento: 25 mm/kV

Para el cálculo de la sobrecarga del viento, se considerará viento horizontal con velocidad de 140 km/h.

Se adoptarán sobrecargas correspondientes a Zona A, según RAT.

El proyecto considerará para el diseño una intensidad de cortocircuito de corta duración de 40 kA.

6.2. Sistema Eléctrico

6.2.1. Magnitudes Eléctricas

Las magnitudes eléctricas básicas de diseño adoptadas para la tensión de 220 kV son:

- Tensión nominal 220 kV
- Tensión más elevada para el material 245 kV
- Neutro Rígido a tierra

DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Col. nº 0650 Profesional

2/5 2025

VISADO: 202501013
Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY]

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 12

- Intensidad de cortocircuito trifásico (valor eficaz) 40 kA
- Tiempo de extinción de la falta 0,5 seg
- Nivel de aislamiento:
 - Tensión soportada a impulso tipo maniobra 460 kV
 - Tensión soportada a impulso tipo rayo 1050 kV
 - Línea de fuga mínima para aisladores 6125 mm

6.2.2. Distancias de Seguridad

Los niveles de aislamiento que se han adoptado, tanto para aparatos como para las distancias en el aire, según viene especificados en el "Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión" en su ITC – RAT 12, son los siguientes:

 En 220 kV, que corresponde a un valor normalizado de tensión más elevada para el material de 245 kV, se adopta el nivel de asilamiento nominal máximo, que soporta 1050 kV de cresta a impulso tipo rayo y 460 kV eficaces a frecuencia industrial durante un minuto.

El vigente "Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión" en su ITC - RAT 12, especifica las normas a seguir para la fijación de las distancias mínimas a puntos en tensión.

Los niveles de aislamiento asociados con los valores normalizados de la tensión más elevada para materiales del grupo B de acuerdo con los niveles de tensión según ITC-RAT 12, serán:

Tensión más elevada para el material (Um) kV eficaces	Tensión soportada nominal a los impulsos tipo rayo (kV cresta)	Tensión soportada impulsos tipo maniobra (fase a tierra)
245	1050	460

La altitud de la instalación es inferior de 1.000 m (cota +310 m sobre el nivel del mar), por lo tanto, las distancias mínimas no tendrán el factor de corrección por altura.

Distancias en pasillos de servicios y zonas de protección:

Según la instrucción ITC – RAT 15, punto 4.1.2., los elementos en tensión no protegidos que se encuentren sobre los pasillos deberán estar a una altura mínima H sobre el suelo, medida en centímetros, igual a H = 250 + d, siendo "d" la distancia expresada en centímetros de las tablas1, 2 y 3 de la ITC – RAT 12, dadas en función de la tensión soportada nominal a impulsos tipo rayo para la instalación.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 13

Para 220 kV, tabla 2 (ITC – RAT 12), d = 210 cm. Por lo tanto:

$$H = 250 + 210 = 460 \text{ cm}$$

La interconexión entre aparatos a 220 kV se situará a una altura de 460 cm sobre el suelo. Cumpliéndose, por tanto, la exigencia mencionada anteriormente.

Por otra parte, todos los elementos en tensión en las zonas accesibles, están situados a una altura sobre el suelo superior a 230 cm, considerando en tensión la línea de contacto del aislador con su zócalo o soporte, si éste se encuentra puesto a tierra, cumpliendo de esta forma lo indicado en la instrucción ITC – RAT 15, punto 4.1.5.

Según la instrucción ITC - RAT 14 punto 6.1.1 e ITC - RAT 15 punto 4.1.1, tanto en instalaciones de interior como de exterior, la anchura de los pasillos de servicio tiene que ser suficiente para permitir la fácil maniobra e inspección de las instalaciones, así como el libre movimiento por los mismos de las personas y el transporte de los aparatos en las operacionesde montaje o revisión de los mismos.

Esta anchura no será inferior a la que a continuación se indica:

- Pasillos de maniobra con elementos en tensión a un solo lado: 1.0 m.
- Pasillos de maniobra con elementos en tensión a ambos lados: 1,2 m.
- Pasillos de inspección con elementos en tensión a un solo lado: 0,8 m.
- Pasillos de inspección con elementos en tensión a ambos lados: 1,0 m.

Distancias en zonas de protección contra contactos accidentales desde el exterior del recinto de la instalación:

Según la instrucción ITC – RAT 15 punto 4.3.1, para cierres de enrejado de altura K≥220 cm, en este caso, la distancia en horizontal entre el cerramiento y las zonas en tensión debe ser superior a:

$$G = d + 150 = 210 + 150 = 360 cm$$

Distancia que se cumple, según puede verse en el plano de Implantación y Secciones incluido en el Documento 03 "Planos".

Disposiciones mínimas para la protección de la salud y seguridad de los trabajadores frente al riesgo eléctrico RD 614/2001:

Según la Tabla 1, "Distancias límites de las zonas de trabajo del R.D. 614/2001", los valores de DPEL-1 (distancia en cm hasta el límite exterior de la zona de peligro cuando exista riesgo de sobretensión por rayo) para niveles de tensión de 220 kV serán de 260 cm. Los elementos en tensión no protegidos, que se encuentren sobre los pasillos, deberán estar a una altura mínima sobre el suelo:

Página 14

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

H= 250 + DPEL-1 + 10 (Margen de Seguridad) = 250 + 260 + 10 = 520 cm

6.2.3. Tendidos de Posición

La conexión de la mayor parte de aparatos se realizará con conductor de aluminio con alma de acero, a una altura mínima de 4,6 m y una distancia entre fases de 4 m, con las siguientes características:

El cable será tipo GULL (337-AL1/44-ST1A), de 25,38 mm de diámetro, equivalente a 381 mm² de sección nominal, que admite un paso de corriente permanente de 712 A.

El amarre de las conexiones tendidas a los pórticos se realizará mediante cadenas de aisladores de vidrio y contempladas con la piecería adecuada.

La unión entre conductores y entre éstos y el aparellaje se realizará mediante piezas de conexión provistas de tornillos de diseño embutido, y fabricadas según la técnica de la masa anódica.

6.2.3.1. Piezas de conexión

Las uniones entre bornas de la aparamenta y conductores se realizarán mediante piezas de aleación de aluminio, de geometría adecuada y diseñadas para soportar las intensidades permanentes y de corta duración previstas sin que existan calentamientos localizados. Su tornillería será de acero inoxidable y quedará embutida en la pieza para evitar altos gradientes de tensión.

6.2.4. Características de la Aparamenta

6.2.4.1. Sistema de 220 kV

Aparellaje:

El aparellaje de intemperie con que se equipa la posición de línea y la ampliación del embarrado es el siguiente:

- Ampliación Posición de barras (1):
 - Un (1) embarrado con tubo de aleación de aluminio.
- Posición de línea (1):
 - Un (1) seccionador tripolar de conexión de barras.
 - Tres (3) transformadores de intensidad.
 - Tres (3) interruptores automáticos unipolares de corte en SF6.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 15

- Un (1) seccionador tripolar con cuchillas de puesta a tierra para conexión a línea.
- Tres (3) transformadores de tensión inductivos.
- Tres (3) pararrayos autoválvulas.

6.2.4.1.1. Interruptor automático

Para la apertura y cierre de los circuitos con carga y cortocircuito se ha previsto la instalación de interruptor automático unipolar, con cámara de corte en SF6, de servicio exterior. Se instalarán tres (3) interruptores.

Las características principales son:

- Tensión de aislamiento asignada 245 kV
- Tensión de servicio nominal 220 kV
- Frecuencia 50 Hz
- Intensidad asignada de servicio continuo 2.000 A
- Intensidad de cortocircuito asignado 40 kA
- Tensión de ensayo 1 minuto 50 Hz 460 kV
- Tensión de ensayo a impulso tipo rayo onda 1,2/50 µs 1050 kV
- Duración nominal de la corriente de cortocircuito 3 s
- Tensión de motor y mando 125 Vcc

Estará diseñado para efectuar reenganches rápidos a través de equipos de reenganche externos al control propio del interruptor.

La cámara de extinción de los interruptores es de gas SF₆ con autosoplado.

Estará montado sobre un chasis y accionado con un mando motorizado a resortes.

La cámara de hexafluoruro debe ser estanca, garantizando, a interruptor abierto, un aislamiento de 1,2 p.u. de la tensión nominal entrada-salida del interruptor en 50 Hz a presión atmosférica. Irá equipado con un manodensostato que indique la presión de SF6, compensado en temperatura.

6.2.4.1.2. Seccionador Tripolar

Será del tipo rotativo de tres columnas por polo, doble apertura lateral y mando motorizado.

El seccionador es tripolar de intemperie y está formado por tres polos independientes, montados sobre una estructura común.

Página 16

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Cada fase consta de tres columnas de aisladores. Las dos laterales son fijas y en su extremo superior llevan el contacto fijo y toma de corriente, mientras que, la columna central es giratoria, y en ella va montada la cuchilla realizando dos rupturas por fase.

El accionamiento en las tres columnas rotativas se hace simultáneo con un mando único, mediante un sistema articulado de tirantes de tubo, ajustados, que permiten que la maniobra de cierre y apertura en las tres fases esté sincronizada.

El seccionador instalado va provisto de unas cuchillas de puesta a tierra, con mando motorizado independiente y enclavamiento mecánico que impide cualquier maniobra estando las cuchillas principales cerradas.

El accionamiento será eléctrico y se instalará telemandado y telecontrolado.

Las características técnicas principales de estos seccionadores son las siguientes:

- Tensión de aislamiento asignada 245 kV
- Tensión de servicio nominal 220 kV
- Nivel de aislamiento a tierra y entre polos:
 - Tensión de ensayo a 50 Hz 1 minuto 460 kV
 - Tensión de ensayo a impulso tipo rayo onda 1,2/50 μs 1050 kV (val. cresta)
- Nivel de aislamiento sobre la distancia de seccionamiento:
 - Tensión de ensayo a 50 Hz 1 minuto 530 kV
 - Tensión de ensayo a impulso tipo rayo onda 1,2/50 μs 1200 kV (val. cresta)
- Intensidad asignada de servicio continuo 2.000 A
- Intensidad admisible de corta duración (1 s) 40 kA (val. eficaz)
- Intensidad admisible (valor de cresta) 100 kA
- Tensión de motor y mando 125 Vcc

Se instalará un (1) seccionador tripolar rotativo de tres columnas con cuchillas de puesta a tierra en posición de línea y (1) seccionador tripolar de conexión de barras.

6.2.4.1.3. Transformadores de intensidad

Las características principales de estos transformadores de intensidad son las siguientes:

- Tensión de aislamiento asignada 245 kV
- Tensión de servicio nominal 220 kV

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 17

Intensidad de cortocircuito simétrico 40 kA

Relación de transformación: 150-300/5-5-5-5 A

Potencias y clases de precisión:

 Arrollamiento de medida fiscal 20 VA Cl. 0,2s

Arrollamiento de protección 1 50 VA CI. 0,5-5P20

Arrollamiento de protección 2 50 VA CI. 5P20

 Arrollamiento de protección 3 50 VA CI. 5P20

Tensión de ensayo a frecuencia industrial

durante 1 minuto, sobre el arrollamiento primario 460 kV

Tensión de ensayo a impulso tipo rayo onda 1,2/50 µs 1050 kV (val. cresta)

Intensidad límite térmica nominal 1,2 x In primaria

En total se instalarán tres (3) transformadores de intensidad de relación 150-300/5-5-5-5 A.

6.2.4.1.4. Transformadores de tensión

Para alimentar los diversos aparatos de medida y protección de circuitos de 220 kV se ha previsto la instalación de transformadores de tensión inductivos de intemperie cuyas características eléctricas más esenciales son:

Frecuencia 50 Hz

Tensión de aislamiento asignada 245 kV

Tensión de servicio nominal 220 kV

Relación de transformación:

 $220/\sqrt{3}:0.110/\sqrt{3} \text{ kV}$ Primer arrollamiento

 $220/\sqrt{3}:0,110/\sqrt{3} \text{ kV}$ Segundo arrollamiento

 Tercer arrollamiento $220/\sqrt{3}:0,110/\sqrt{3} \text{ kV}$

Potencias y clase de precisión (de potencias simultáneas):

Arrollamiento de medida 20 VA Cl. 0,2

Arrollamiento protección 1 50 VA Cl. 0,5-3P

50 VA Cl. 0,5-3P Arrollamiento protección 2

Tensión de ensayo a frecuencia industrial durante 1 min 460 kV

Tensión de ensayo a impulso tipo rayo onda 1,2/50 µs 1050 kV

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 18

El número total de transformadores de tensión inductivos a instalar es de tres (3).

6.2.4.1.5. Pararrayos autoválvula

Para proteger la instalación contra las sobretensiones de origen atmosférico, o las que por cualquier otra causa pudieran producirse, se ha proyectado el montaje de tres (3) pararrayos conectados en derivación, con contador de descargas.

- Tensión nominal pararrayos 220
- Tensión de servicio continuo (Uc) 156 kV
- Tensión asignada(Ur) 192 kV
- Intensidad nominal de descarga (onda 8/20 µs) 10 kA
- Clase de descarga 2

6.3. Red de Tierras

6.3.1. Red de Tierras Inferiores

Cumplimentando la Instrucción Técnica Complementaria ITC – RAT 13, se conectarán a la tierra de protección todas las partes metálicas no sometidas a tensión normalmente, pero que pudieran estarlo como consecuencia de averías, sobretensiones por descarga atmosféricas o tensiones inductivas. Por este motivo, se unen a la malla: estructuras metálicas, bases de aparamenta, puertas metálicas de edificios, cerramientos metálicos, etc.

Estas conexiones se fijarán a la estructura y carcasas de la aparamenta mediante tornillos y grapas especiales de aleación de cobre, que permitan no superar la temperatura de 200 °C en las uniones y que aseguren la permanencia de la unión.

Se hará uso de soldaduras aluminotérmicas de alto poder de fusión, para las uniones bajo tierra, ya que sus propiedades son altamente resistentes a la corrosión galvánica

6.3.2. Red de Tierras Superiores

No es objeto del presente proyecto.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 19

6.4. Estructuras Metálicas

6.4.1. Características generales estructura metálica

Los embarrados serán elegidos de forma que las temperaturas máximas previstas no provoquen calentamientos por encima de 40° C sobre la temperatura ambiente. Asimismo, soportarán los esfuerzos electrodinámicos y térmicos de las corrientes de cortocircuito previstas, sin que se produzcan deformaciones permanentes.

Para el desarrollo y ejecución de la instalación proyectada es necesario el montaje de una estructura metálica que sirva de apoyo y soporte de la aparamenta de intemperie y los embarrados, así como para el amarre de las líneas.

Tanto la estructura del pórtico como los soportes de la aparamenta se realizarán en base a perfiles de acero de alma llena de acero normalizados, soldados y/o atornillados, sobre los que se aplicará un tratamiento anticorrosión por galvanizado por inmersión en caliente.

Estas estructuras se completan con herrajes y tornillería auxiliares para fijación de cajas de centralización, sujeción de cables y otros elementos accesorios.

Las cimentaciones necesarias para el anclaje de las estructuras se proyectarán teniendo en cuenta los esfuerzos aplicados, para asegurar la estabilidad al vuelco en las peores condiciones.

Los tipos de acero empleados para la construcción de estructuras metálicas se establecen en función de sus características mecánicas y se identifican mediante un número que indica el valor mínimo garantizado del límite elástico expresado en N/mm².

La estructura metálica empleada estará constituida por perfiles de alma llena del tipo S-275-JR.

La designación de los aceros laminados en caliente para perfiles estructurales de uso general se indica en la Norma UNE-EN 10025.

Mediante certificación se verificará el cumplimiento de las características siguientes:

- Composición química, conforme a la Norma UNE-EN 10025.
- Características mecánicas (límite elástico, resistencia a tracción y alargamiento derotura), conforme a la Norma UNE-EN 10025.
- Resiliencia, conforme a la Norma UNE-EN 10025.
- Características geométricas, dimensionales, de forma y peso, conforme a la norma de producto correspondiente en cada caso.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 20

6.4.2. Estructura metálica necesaria en la instalación

En concreto la estructura metálica necesaria de la instalación consta en esencia de:

- Dos (2) columnas con forma de "V" destinadas a formar los pórticos (de altura 15 m de amarre de la línea).
- Una (1) viga de amarre para los pórticos (de altura 15 m) de amarre de la línea.
- Tres (3) soportes para montaje de pararrayos autoválvulas.
- Tres (3) soportes para montaje de transformadores de tensión inductivos.
- Un (1) soporte para montaje de seccionador tripolar para conexión de barras.
- Un (1) soporte para montaje de seccionador tripolar con cuchillas de PaT.
- Tres (3) soportes para montaje de transformadores de intensidad.
- Tres (3) soportes para montaje interruptor automático unipolar de corte en SF₆.
- Un (1) soporte para montaje de vanos del embarrado.
- Un (1) Soporte para montaje de aisladores C10-1050 de tipo columna.

6.5. Sistemas de Control y Protección

6.5.1. Sistema de Control

Se ha previsto la instalación de un sistema integrado de protecciones y control, que englobará las siguientes funciones:

- Control local de la instalación.
- Registro de alarmas y oscilografía.
- Adquisición de datos para el telemando (alarmas, estados, órdenes).
- Remota de telemando.

El mando y control de la subestación, así como los equipos de protección y automatismo, se instalarán en armarios ubicados en la sala de control del edificio. El Sistema Integrado de Protecciones y Control será de tipo digital y de configuración distribuida, estando formado por los siguientes elementos:

Unidad de Control de Subestación (UCS) dispuesta en un armario de chapa de acero, en el que se ubicarán, además de la unidad de control propiamente dicha, una pantalla y un teclado en el frente, un reloj de sincronización GPS, una unidad de control para la adquisición de las señales de los servicios auxiliares y una bandeja para la instalación de los módem de comunicación tanto con el Telemando como con las consolas remotas y puesto de adquisición de protecciones a través deRTC (Red Telefónica Conmutada).

Col. nº 06551 JULIAN GARCIA SANCHEZ

EGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPAD DE ASTURIAS

2025

Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY] VISADO: 202501013

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 21

- Una Unidad de Control de Posición (UCP) por cada posición. Estas UCPs tendrán funciones de control ymedida, están constituidas por un rack de 19" y van alojadas en armarios en la sala de control del edificio.
- Una Unidad de Control de Servicios Generales (UCP) incorporada en la UCS en la que se centralizan y recogen las señales de tipo general de la subestación y las asociadas a los cuadros de servicios auxiliares y equipos rectificador-batería.

Las comunicaciones entre las diferentes UCP's y la UCS correspondiente se realizará a través de una estrella óptica con fibra de cristal multimodo de 62,5/125 µm.

Desde cada UCP se podrá controlar y actuar localmente sobre la posición asociada, y desde la UCS se podrá controlar cualquiera de las posiciones, así como disponer de información relativa a medidas, alarmas y estado del sistema en general.

El armario a instalar en la sala de control y protecciones es:

Un armario de protecciones, control y medida, para la nueva posición de línea objeto de la presente ampliación.

Los armarios de control y protección estarán compuestos por chasis construidos con perfiles metálicos, cerrados por paneles laterales fijos, acceso anterior con chasis pivotante y puerta frontal de cristal o policarbonato ignífugo, lo cual permite una gran visibilidad, protección contra polvo y suciedad, y fácil manejo y acceso a los aparatos instalados.

Las interconexiones entre la aparamenta y los armarios de protección, control y medida que componen la instalación, se realizarán con cables aislados de control sin halógenos.

En el Documento 03 "Planos" puede verse la disposición de armarios prevista en la sala de control.

6.5.2. Sistema de Protecciones

6.5.3. Línea 220 kV

Protección principal:

87L	Protección diferencial de línea
21	Protección de distancia o impedancia
67N	Sobreintensidad direccional de neutro
79	Reenganche
LOC	Localizador de faltas
OSC	Localizador de faltas
R	Relay (relé)
E	Earth (tierra)

Página 22

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

DOCUMENTO 01: MEMORIA

Protección secundaria:

87L	Protección diferencial de línea
21	Protección de distancia o impedancia
67N	Sobreintensidad direccional de neutro
79	Reenganche
59	Protección contra sobretensiones
LOC	Localizador de faltas
OSC	Localizador de faltas

6.6. Servicios Auxiliares

6.6.1. Servicios Auxiliares de Corriente Alterna

No es objeto del presente proyecto.

6.6.2. Servicios Auxiliares de Corriente Continua

No es objeto del presente proyecto.

6.7. Sistema de Telecomunicaciones

Se ha previsto instalar una red de telecomunicaciones con los equipos precisos que permitan asegurar el correcto funcionamiento del telecontrol y del telemando, de los sistemas de protección y de las necesidades de telegestión remota de los equipos de la instalación.

6.7.1. Telecomunicaciones para funciones de protección

Para la comunicación que requieren las funciones de protección se han previsto enlaces digitales y/o analógicos, facilitados por la red de equipos de transmisión SDH y PDH, que a su vez están soportados por la red de fibra óptica.

Las protecciones de distancia, interruptor y otras que requieran de la funcionalidad de teledisparo serán conectadas a teleprotecciones, equipadas con suficientes órdenes para satisfacer el servicio requerido.

6.7.2. Red de fibra óptica en la subestación

Se ha previsto una red de fibra óptica, en configuración de doble estrella con cables de fibra multimodo, desde el armario de fibra multimodo hasta las dependencias del edificio que requieren servicios de comunicación de protecciones, servicios de telecontrol, telegestión y sincronización horaria, dando con ello servicio a las distintas posiciones.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 23

6.7.3. Telegestión de protecciones, sistemas de telecontrol y equipos de comunicaciones.

Todos los equipos de protecciones, telecontrol y comunicaciones serán telegestionados, por medio de su conexión a la red de servicios IP de la red distribuida por la subestación soportada por la red de fibra multimodo.

Se dotará a la subestación de un sistema de Telecontrol y Telemando, el cual se encargará de recoger las señales, alarmas y medidas de la instalación para su transmisión a los centros remotos de operación.

La información a transmitir será tratada y preparada por el sistema de control integrado y la transmisión se realizará por fibra óptica, instalada en la línea eléctrica.

A través de esta vía de comunicación se podrán transmitir señales de teledisparo y realizar telemedida.

6.8. Medida de Energía

Para el sistema de medidas de energía de la subestación debe cumplirse lo indicado en el Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medida del sistema eléctrico.

6.9. Obra Civil

La obra civil de la subestación comprende todos aquellos trabajos y ejecución de obras que sean precisos para la recepción y posterior montaje de toda la aparamenta y equipos que componen la subestación, así como de todos los sistemas complementarios que se integran en el mismo.

6.9.1. Movimiento de Tierras

La siguiente tabla muestra el volumen total del movimiento de tierras estimado para plataforma y vial de acceso, desglosado en volúmenes de movimientos de tierras de desmonte, terraplén y tierra vegetal.

VOLUMEN TOTAL DEL MOVIMIENTO DE TIERRAS					
Desmonte (m³) 303,38					
Terraplén (m³)	1.529,18				
Tierra vegetal (m³)	560,23				

6.9.2. Urbanización

Se llevará a cabo en primer lugar el desbroce de la capa vegetal y retirada a vertedero de la capa superficial del terreno, hasta alcanzar una profundidad aproximada de 30 cm en toda la superficie.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 24

Se procederá a la explanación, relleno y nivelación del terreno, a la cota definitiva de explanación. Se terminará la explanada con una capa superficial de 60 cm de suelo adecuado o seleccionado procedente de préstamo, hasta alcanzar el nivel teórico de explanación (NTE).

El extendido y compactación se podrá realizar en varias tongadas, siempre de espesor inferior a 30 cm, hasta lograr una compactación del 96% del Proctor modificado (P.M.).

Antes de realizar la coronación se tenderá la red inferior de tierras de la subestación.

Las tierras sobrantes procedentes de la excavación serán retiradas y trasladadas a un vertedero autorizado.

Sobre la explanada, una vez nivelada, se procederá a realizar los trabajos de excavación y movimiento de tierras necesarios para ejecutar las cimentaciones, las canalizaciones de drenaje y eléctricas, los viales interiores, etc.

Si fuese necesario, se aportará un relleno de préstamo, de zahorra compactada en capas de 30 cm hasta alcanzar la cota definitiva.

6.9.3. Accesos y Viales

Se adaptará el vial de acceso a la ampliación de la subestación, realizando labores de adecuación de vial en los viales existentes y planteando el tramo del nuevo vial que conduce al segundo acceso de vehículos de la subestación.

6.9.4. Edificio de Control

No es objeto del presente proyecto.

6.9.5. Cimentaciones del Aparellaje Eléctrico de la Subestación

Se realizarán las cimentaciones necesarias para la sustentación del pórtico y las estructuras soporte de los diferentes equipos.

Se ejecutarán con hormigón armado en dos fases, vertido directamente sobre el terreno. Se embeberán en dicha cimentación los pernos de anclaje de la estructura soporte.

Los materiales utilizados en las cimentaciones correspondientes son:

- Hormigón:HM-20.
- Acero: B 500 S (para los cercos de atado de los pernos).

Col. nº 06551 JULIAN GARCIA SANCHEZ

EGIO OFICIAL DE INGENIEROS TÉCNICOS INDUST DE ASTURIAS Habilitación Profesional

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 25

En caso de que las condiciones geotécnicas así lo recomienden, podrá haber cimentaciones que se realicen con hormigón armado, en este caso los materiales a utilizar serán los siguientes:

- Hormigón: HA-25.
- Acero: B 500 S (armaduras y cercos de atado de pernos).

6.9.6. Red de Drenaje

A lo largo de toda la subestación se ha dispuesto una canalización de pluviales que se encarga de recoger el agua por medio de sumideros o bien mediante tubo DREN.

6.9.7. Canalizaciones y Canales de Cables

Se construirán todas las canalizaciones eléctricas necesarias para el tendido de los correspondientes cables de potencia y control. Estas canalizaciones estarán formadas canales, arquetas y tubos, enlazando los distintos elementos de la instalación para su correcto control y funcionamiento.

Las canalizaciones para conducción de cables a instalar son de dos tipos:

- Prefabricadas, o canalizaciones principales, constituidas por un canal prefabricado con tapas de hormigón accesibles desde la superficie, dotando al trazado de la canalización de un sistema inferior de drenajes para la evacuación de aguas procedentes de lluvias. Esta canalización está comunicada con el edificio de control.
- Tubos, o canalizaciones secundarias, realizadas con tubo de plástico de doble pared, lisa la interna y corrugada la externa, de diámetro exterior de 200 mm para la recogida de cables de los equipos y conexión con las canalizaciones principales.

El empleo de canalización bajo tubo hormigonada será prioritario en los siguientes casos:

- Cruces o tendidos a lo largo de viales.
- Cruzamientos, paralelismos y casos especiales, cuando la normativa lo exija.

6.9.8. Cierre Perimetral

Se adaptará el cierre perimetral de la subestación a la ampliación en el parque de intemperie objeto del presente proyecto. Se colocará un cerramiento exterior con tela metálica de simple torsión de alambre de acero dulce o de plástico polipropileno de alto impacto.

En el perímetro exterior de la subestación se esparcirá una capa de grava de 1 metro de ancho alrededor de toda la subestación.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 26

6.10. Instalación de Alumbrado y Fuerza

6.10.1. Alumbrado

6.10.1.1. Alumbrado Exterior

No es objeto del presente proyecto.

6.10.1.2. Alumbrado Interior

No es objeto del presente proyecto.

6.10.2. Fuerza

Se instalarán tomas de fuerza combinadas de 3P+T (32 A) y 2P+T (16 A) en cuadros de intemperie anclados a pilares próximos a los viales, de forma que cubran el parque considerando cada conjunto con un radio de cobertura de 25 m.

6.11. Sistema Contraincendios y Antiintrusismo

6.11.1. Sistema Contraincendios

El sistema de protección contra incendios se ajustará a las exigencias de la ITC14 del RAT, teniendo en cuenta las siguientes consideraciones:

- La posibilidad de propagación del incendio a otras partes de la instalación.
- La posibilidad de propagación del incendio al exterior de la instalación, por lo que respecta a daños a terceros.
- La ausencia de personal de servicio permanente en la instalación.
- La naturaleza y resistencia al fuego de la estructura soporte del edificio y de sus cubiertas.
- La disponibilidad de medios públicos de lucha contra incendios.

6.11.1.1. Detección y sistema de alarma

No es objeto del presente proyecto.

6.11.1.2. Señalización de evacuación y métodos de protección

No es objeto del presente proyecto.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 27

6.11.1.3. Extintores

Deben instalarse extintores de polvo ABC, con una eficiencia minima de 21A-113B distribuidos a través de las áreas utilizables en el edificio, cumpliendo con que la distancia desde cualquier punto del mismo al extintor más cercano debe ser inferior a 15 m.

En áreas de riesgo eléctrico, se instalarán extintores de CO2 de 5 kg con una eficiencia mínima de 89-B.

Los extintores deberán estar ubicados de manera que sean fácilmente visibles y accesibles, estén ubicados cerca de los puntos donde existe la mayor posibilidad de que se inicie un incendio, cerca de salidas de emergencia y preferiblemente en montajes unidos a particiones verticales, de modo que la parte superior del extintor permanezca a un máximo de 1.70 metros sobre el suelo.

6.11.2. Sistema Antiintrusismo

No es objeto del presente proyecto.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 28

7. PLAZO DE EJECUCIÓN Y CRONOGRAMA

La ejecución de la obra a realizar se estima en un plazo de 2 meses a partir del comienzo de la misma.

DESCRIBCIÓN	MES		1° /	MES	ΛES		2° MES			
DESCRIPCIÓN	SEMANA 1		2 ^a	3ª	4 ª	1ª	2 ^a	3ª	4 ª	
OBRAS PRELIMIN	ARES	Х	X							
	LIMPIEZA DE TERRENO	Х								
	TRAZADO Y REPLANTEO	Х	Х							
MOVIMIENTO DE	MOVIMIENTO DE TIERRAS		Х	Χ						
	ZANJA PARA RED DE TIERRAS		Х	X						
	TRANSPORTE DE MATERIAL EXCEDENTE			х						
RED DE TIERRAS				X						
	TENDIDO Y CONEXIONADO DE LA MALLA DE TIERRAS			х						
OBRA CIVIL				X	Х					
	EXCAVACIÓN DE CIMENTACIONES			Х	X					
MONTAJE DE AP	ARELLAJE				X	X	X	X	X	
	ARMADO Y MONTAJE DE ESTRUCTURAS METALICAS				X	X	X			
	MONTAJE DE APARELLAJE					X	X			
	CONEXIÓN DE TIERRAS Y EQUIPOS					X	X			
	CONEXIONADO DE EQUIPOS						X	X		
	CONEXIONES GENERALES							X		
	PRUEBAS							X	X	
	PUESTA EN MARCHA								X	
ENTRADA EN FUN	ICIONAMIENTO DE LA INSTALACION								X	

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 29

8. CONCLUSIÓN

Con lo anteriormente expuesto, se consideran suficientemente descritos los elementos constitutivos y las actuaciones constructivas derivadas de la instalación y funcionamiento de la Subestación Eléctrica SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV, con el fin de informar a los organismos oficiales competentes y obtener de ellos la Autorización Administrativa Previa y la Autorización Administrativa de Construcción.

Col. nº 06551 JULIAN GARCIA SANCHEZ

2/5 2025

Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY] VISADO: 202501013

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Anexo 01: Cálculos Justificativos Enero 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE

1.	CÁI	CUL	O DE EMBARRADOS Y CONDUCTORES ÓTESIS DE DISEÑO	. 3	SIPADO 問題	
	1.1.					- AND THE PARTY
	1.2.	CO	NDICIONES DE LA INSTALACIÓN	.3	LES DE	
	1.3.	CAF	RACTERÍSTICAS DE LOS MATERIALES Y EQUIPOS A INSTALAR	.3	USTRIA	NCHEZ
	1.3.	1.	CONDUCTOR RÍGIDO.	.3	OS IND	CIA SA
	1.3.	2.	CONDICIONES DEL VANO	વ	STL	AN GAF
	1.3.	3.	TUBO 150/134 (EMBARRADO PRINCIPAL).	.3	VIEROS DE	551 JUL
	1.3.	4.	TUBO 150/134 (EMBARRADO PRINCIPAL)	.4	E INGEI	Col. nº 06551 JULIAN GARCIA SANCHEZ
	1.4.	CÁL	CULO MECÁNICO DEL EMBARRADO PRINCIPAL	.4	ICIAL D	
	1.4.	1.	CORRIENTE DE CORTOCIRCUITO		EGIO OF	Habilitacion Profesional
	1.4.	2.	TENSIÓN EN EL TUBO	.5	COLI	Pro Pro
	1.4.	3.	REACCIONES SOBRE AISLADORES SOPORTE		00	<u>25</u>
	1.4.	4.	FLECHA EN EL TUBO	11		
	1.4.	5.	ELONGACIÓN DEL EMBARRADO	11		AJY]
	1.4.	6.	ESFUERZO TÉRMICO EN CORTOCIRCUITO.	12		YMYMP
	1.4.	7.	INTENSIDAD NOMINAL DE LAS BARRAS.	12		XZGYAF
	1.5.	CÁL	CULO DEL CONDUCTOR FLEXIBLE DE INTERCONEXIÓN ENTRE APARAMENTA 220 KV	13	013	/alidar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY]
	1.5.	1.	INTENSIDAD SISTEMA 220 KV	13	DO: 202501013	9-gestion
	1.5.	2.	CARACTERÍSTICAS DEL CONDUCTOR A INSTALAR	13	00:2	ogitipa.
	1.5.	3.	ELECCIÓN DEL CONDUCTOR	14		/alidar c
	1.6.	CÁL	CULO DE EFECTO CORONA	15		
2.	ESTI	MAC	CIÓN DE CORRIENTES DE CORTOCIRCUITO	17	× ×	
3.	RED	DE T	IERRAS	19		
;	3.1.	RED	DE TIERRAS INFERIORES	19		
	3.1.	1.	RESISTIVIDAD DEL TERRENO	19		
	3.1.	2.	CARACTERÍSTICAS DEL CONDUCTOR	19		
	3.1.	3.	TENSIONES DE PASO Y CONTACTO MÁXIMAS ADMISIBLES	20		

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 2

3.1.4.	CÁLCULO DE LA RED DE TIERRAS	21
3.1.4.1	. RESISTENCIA DE PUESTA A TIERRA:	21
3.1.4.2	2. INTENSIDAD DE DEFECTO A TIERRA:	22
3.1.4.3	3. EVALUACIÓN DE TENSIONES DE PASO Y CONTACTO:	22

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 3

1. CÁLCULO DE EMBARRADOS Y CONDUCTORES

1.1. Hipótesis de diseño

Se adoptan los siguientes valores de diseño:

- Icc (simétrica) = 50 kA
- R/X (sistema) = 0,085
- Duración del cortocircuito: 0,5 s.

1.2. Condiciones de la instalación

La subestación se encuentra a +310,00 m sobre el nivel del mar (Zona A según RLAT). Por lo tanto, se consideran las siguientes condiciones climatológicas:

- Viento: Presión de viento a 140 km/h = 95,3 DaN/m²
- 1.3. Características de los materiales y equipos a instalar

1.3.1. Conductor rígido.

Se van a realizar interconexiones con un tipo de tubo de Al:

• Tubo 150/134 mm Ø en barras principales

1.3.2. Condiciones del vano.

La geometría y condiciones de anclaje en los extremos de los vanos considerados como más desfavorables son las siguientes:

Vano A - Barras principales con las siguientes condiciones:

_	Lonaitud de vano:	13.5 m

Distancia entre fases: 4 m

Fijo – Elástico - Anclajes:

1.3.3. Tubo 150/134 (Embarrado principal).

Aleación E-AlMgSi0,5, F22

Diámetro exterior (D) interior (d) 150/134 mm

Espesor de la pared (e) 8 mm

Peso propio unitario (Ppu) 9,64 kg/m

3.569 mm2 Sección (A)

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

ANEXO 01: CÁLCULOS JUSTIFICATIVOS

Página 4

Carga de rotura del material (a_R) 195 N/mm2

Momento de inercia (I) 902 cm4

Momento resistente (W) 120 cm3

Módulo de elasticidad (Young) (E) 70.000 N/mm2

Límite de fluencia mínimo del material (R_{p0,2}) 160 N/mm2

Coeficiente de dilatación lineal (s) 0,023 mm/m°C

Intensidad máxima 3.250 A

1.3.4. Características de los aisladores soporte

Se instalan aisladores C10-1050, de las siguientes características mecánicas:

•	Carga de rotura a flexión	10.000 N
---	---------------------------	----------

Carga de rotura a torsión 4.000 N

Altura del aislador 2.300 mm

Altura de la pieza soporte 170 mm

1.4. Cálculo mecánico del embarrado principal

1.4.1. Corriente de cortocircuito

Según lo descrito en el apartado 1.1, la intensidad simétrica de cortocircuito trifásico (Icc) a efectos de diseño es de 40 kA.

La intensidad de cresta (S/ CEI 909) se calcula según:

$$I_p = X \cdot \sqrt{2} \cdot I_{cc}$$

Siendo:

$$X = 1.02 + 0.98 \cdot e^{-3R/X}$$

R/X es la relación de impedancias equivalentes del sistema en el punto de cortocircuito que se considerará con valor 0,085 para este nivel de tensión.

Resultando: χ = 1,780 con lo que I_p = 100,7 kA. para I_{cc} = 40 kA.

Página 5

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

1.4.2. Tensión en el tubo

Esfuerzos por viento

Vienen dados por la siguiente ecuación:

$$F_v = p_v \cdot D$$

Siendo

 $Pv = 952.8 \text{ N/m}^2$, presión del viento a 140 km/h.

D = 0,150 m, diámetro exterior del tubo.

Por tanto,

$$F_v = 142,92 \text{ N/m}$$

Esfuerzos por peso propio

Serán la suma del esfuerzo producido por el propio peso y el cable amortiguador:

$$F_p = F_{pp} + Cable \ amortiguador$$

Donde

$$F_{pp} = P_{pu} \cdot g$$

Siendo

 $P_{pu} = 9,64 \text{ kg/m}$, peso propio unitario.

 $g = 9.81 \text{ m/s}^2$, gravedad.

Cable amortiguador (RAIL) con peso de 15,68 N/m, en 4/3 del vano, equivalentes a 20,91 N/m.

Sustituyendo se obtiene que

$$F_p = 115,48 N/m$$

Esfuerzos por hielo

En zona A según RLAT no se tendrá en cuenta sobrecarga alguna motivada por el hielo.

Esfuerzos por cortocircuito

La fuerza estática por unidad de longitud entre dos conductores paralelos recorridos por una intensidad se obtiene de la expresión:

$$F_s = 0.866 \cdot \frac{\mu_0 \cdot I_p^2}{2 \cdot \pi \cdot a}$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 6

Siendo

 $\mu_0 = 4\pi \cdot 10-7 \text{ N/A}^2$, permeabilidad magnética del vacío.

I_p = 100,7 kA, intensidad de cresta de cortocircuito trifásico.

a = 4 m, distancia entre fases.

Sustituyendo valores se obtiene:

$$F_s = 439,01 \, N/m$$

Los esfuerzos dinámicos dependen a su vez de la frecuencia de vibración propia del tubo, que permite calcular dos coeficientes que determinan el esfuerzo dinámico en cortocircuito:

- V_{σ} =Factor que tiene en cuenta el defecto dinámico.
- V_r = factor que tiene en cuenta el reenganche.

La frecuencia de vibración de un tubo es (CEI 865):

$$f_v = \frac{\gamma}{l^2} \cdot \sqrt{\frac{E \cdot I}{m}}$$

Siendo

I = 902 cm⁴, inercia de la sección.

m = 11,77 kg/m, masa unitaria del tubo, incluido cable amortiguador.

E = 70.000 N/mm², módulo de Young del material.

I = 13,5 m, longitud del vano.

 Υ = 1,57, coeficiente del tubo y los apoyos. Sustituyendo se obtiene:

$$f_v = 2,00 \, Hz$$

La relación entre frecuencia de vibración y frecuencia nominal del sistema es:

$$f_v/_f = 0.040$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 7

En estas condiciones y según la norma CEI 865 se establecen los valores:

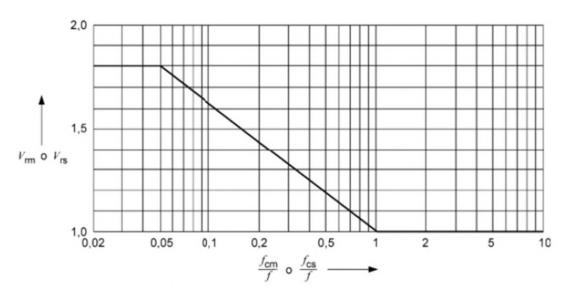
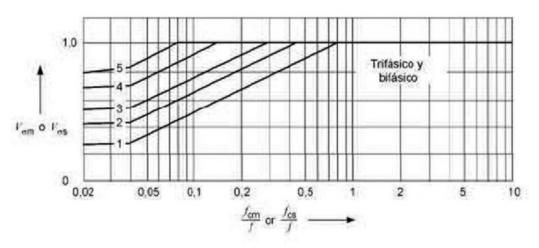



Figura 1. Relación con Vr.

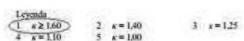


Figura 2. Relación con Vσ y K.

•
$$V_{\sigma} = 0.756 + 4.49 \cdot e^{-1.68 \cdot K} + 0.54 \cdot \log \frac{f_{v}}{f} = 0.306$$

•
$$V_r = 1 - 0.615 \cdot \log \frac{f_v}{f} = 1.86$$

La tensión de trabajo en el tubo por esfuerzo dinámico de cortocircuito, vale:

$$\sigma_m = V_\sigma \cdot V_r \cdot \beta \cdot \frac{F_s \cdot I^2}{8 \cdot W}$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 8

Siendo

 β = 1, CEI 865.

W = 120 cm³, momento resistente de la sección del tubo.

Sustituyendo valores en la ecuación se obtiene:

$$\sigma_m = 47,44 \ N/mm^2$$

La tensión de trabajo total en el tubo vendrá dada por la suma geométrica de las tensiones producidas por los distintos esfuerzos, que se acumulan en sus direcciones respectivas, a la calculada de cortocircuito. En este caso, y considerando todas las cargas uniformemente repartidas:

$$\sigma = \frac{1}{8} \cdot \frac{P \cdot I^2}{W}$$

Siendo

P = Carga repartida que produce el esfuerzo.

Se obtiene:

Por viento:

$$\sigma_v = \frac{1}{8} \cdot \frac{142,92 \cdot 13,5^2}{120} = 54,26 \, N/mm^2$$

Por peso propio:

$$\sigma_p = \frac{1}{8} \cdot \frac{115,48 \cdot 13,5^2}{120} = 43,84 \, N/mm^2$$

Tensión máxima:

$$\sigma_t = \sqrt{(\sigma_v + \sigma_m)^2 + (\sigma_p + \sigma_h)^2} = 110,75 \text{ N/mm}^2$$

El coeficiente de seguridad del tubo frente al límite de fluencia vale: 160/σt = 1,44

En cuanto al esfuerzo en cortocircuito, la norma CEI 865 establece que el tubo soporta los esfuerzos si se cumple que:

$$\sigma_t \leq q \cdot R_{v0.2}$$

Siendo

 $q = 1,344 \varnothing 150/134$, factor de resistencia.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

R_{p0,2} = 160 N/mm², límite de fluencia mínimo del material.

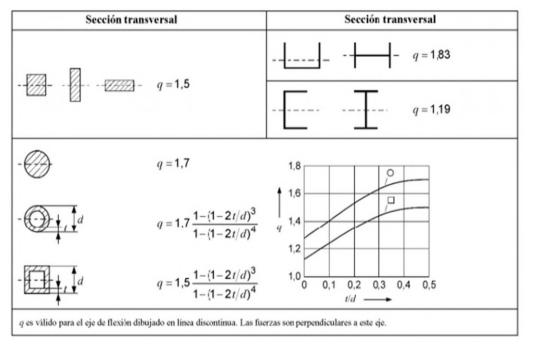


Figura 3. Factor q.

Por tanto, se verifica que

$$\sigma_t \le 1{,}334 \cdot 160 = 215{,}04 \, N/mm^2$$

Se observa que el tubo está lejos del límite para esfuerzos de cortocircuito.

1.4.3. Reacciones sobre aisladores soporte

El máximo esfuerzo se producirá en los aisladores intermedios, considerando dos veces el esfuerzo producido en el extremo de un vano, según CEI 865.

Las acciones a considerar en este caso son solo horizontales. Por tanto:

• Viento sobre el tubo

$$F_v = p_v \cdot D = 142,92 \text{ N/m}$$

• Esfuerzo en cortocircuito

Según la norma de referencia, el valor de esfuerzo sobre los soportes tiene la expresión:

$$F_s = 0.866 \cdot V_f \cdot V_r \cdot \frac{\mu 0 \cdot I_p^2}{2 \cdot \pi \cdot a}$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Siendo

 $V_f = 0.35$, factor de carga dependiente de fv/f = 0.040

 $V_r = 1.86$

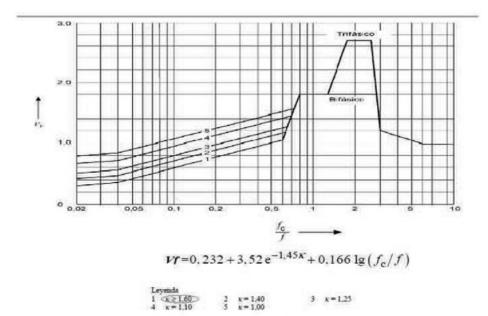


Figura 4. Relación fv/f con Vf.

Sustituyendo valores se obtiene:

$$F_s = 282,34 N/m$$

La suma de esfuerzos sobre el soporte central entre dos vanos será:

$$F_t = 2 \cdot (F_v + F_s) \cdot l \cdot \alpha$$

Siendo

a = 0,5, coeficiente de reparto para el soporte crítico en ambos vanos (CEI 865). Sustituyendo valores se obtiene:

$$F_t = 5.740,92 N$$

Este esfuerzo se produce sobre el eje del tubo, que está situado 170 mm por encima de la cabeza del aislador, punto sobre el que el fabricante garantiza el esfuerzo. Por lo tanto:

$$F_t' = F_t \cdot \frac{2300 \; (altura \; aislador) + 170 \; (pieza \; soporte)}{2300 \; (altura \; aislador)} = 6165,24 \; N$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 11

El aislador trabajará, en las peores condiciones, con un coeficiente de seguridad frente a la carga inferior de rotura de:

10000 (carga rotura fleción aislador)/ F'_{t} = 1,62

1.4.4. Flecha en el tubo

La flecha máxima para un vano se obtiene de la expresión:

$$f = \alpha_f \cdot \frac{P \cdot l^4}{E \cdot I}$$

Siendo

P = Fuerza vertical por unidad de longitud (Fp+Fh).

a_f = 1,3, factor dependiente del tipo de apoyo.

I = 13,5 m, longitud del vano.

E = 70.000 N/mm², módulo de Young del material.

I = 902 cm⁴, inercia de la sección.

Sustituyendo valores se obtiene:

$$f = 7,90 cm$$

1.4.5. Elongación del embarrado

El tubo que forma el embarrado, por efectos térmicos se dilatará, de acuerdo con la expresión:

$$\Delta l = l_0 \cdot \alpha \cdot \Delta \theta$$

Siendo

l₀ =Longitud inicial del tubo.

a =0,023 mm/m°C, coeficiente de dilatación lineal del tubo.

 $\Delta\theta$ = Incremento de temperatura entre montaje (35°C) y servicio (80°C).

Sustituyendo valores se obtiene:

$$\Delta l = 13,97 \, mm$$

Se instarán piezas que permitan absorber esta dilatación.

Página 12

ANEXO 01: CÁLCULOS JUSTIFICATIVOS

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

1.4.6. Esfuerzo térmico en cortocircuito.

La intensidad térmica en cortocircuito viene dada según CEI 865 por la expresión:

$$I_{\theta} = I_{cc} \cdot \sqrt{(m+n)}$$

Siendo

m y n coeficientes térmicos de disipación, que valen 0,097 y 0,758 respectivamente según norma de referencia.

Sustituyendo valores se obtiene:

$$I_{\theta} = 93,11 \, kA$$

Este valor debe ser menor que la capacidad térmica del tubo, con densidad de corriente en cortocircuito

ρ= 116 A/mm² (proceso adiabático).

La capacidad térmica del tubo es (siendo S la sección del tubo):

$$S \cdot \rho = 3.569 \cdot 116 = 414 \, kA$$

Se observa un valor muy superior a la corriente térmica de cortocircuito de la instalación.

1.4.7. Intensidad nominal de las barras.

La intensidad nominal teórica del tubo elegido, según fabricante es de 3.250 (para tubo 150/134 mm) con 30 °C de temperatura ambiente y 65 °C de temperatura de trabajo del tubo.

Según DIN 43670, esta intensidad debe ser corregida con distintos factores en función de la composición del tubo, la altitud, la temperatura máxima de trabajo (según RAT).

Deben tenerse en cuenta los siguientes factores:

k1 = 0,925 por la aleación elegida

k2 = 1,25 para temperatura final de 80 °C

k3 = 1 por ser tubo

k4 = 0,98 para instalación a menos de 1000 msnm según la citada norma:

$$I_{max} = I_n \cdot k1 \cdot k2 \cdot k3 \cdot k4$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 13

Sustituyendo valores se obtiene:

$$I_{max} = 3.682,66 A$$

1.5. Cálculo del conductor flexible de interconexión entre aparamenta 220 kV

1.5.1. Intensidad sistema 220 kV

La intensidad en una línea viene dada por la expresión:

$$I = \frac{P}{\sqrt{3} \cdot V \cdot \cos(\varphi)}$$

Donde:

P: Potencia de la línea en kW

V: Tensión de alimentación en kV

I: Intensidad en A

 $cos(\phi)$: Factor de potencia = 0,95

La intensidad en la posición de línea de 220 kV objeto de la presente ampliación será, por tanto:

$$I_{220 L} = \frac{66.770}{\sqrt{3} \cdot 220 \cdot 0,95} = 184,45 A$$

Considerando una sobrecarga del 10% de la intensidad máxima esperada, se tiene:

$$I_{220 L} = 202,89 A$$

1.5.2. Características del conductor a instalar

•	Designación	337-AL1/44-ST1A (GULL)
•	Sección total	381 mm ²
•	Número de alambres	54 AL1+7 ST1 A
•	Diámetro de alambres	2,82 / 2,82 mm
•	Diámetro alma	8,46 mm
•	Diámetro conductor	25,38 mm
•	Masa lineal	1.275 Kg/Km
•	Carga de rotura	10.650 daN

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 14

Resistencia en cc 0,0857 Ω/Km

Módulo de elasticidad 6.900 daN/mm²

Coeficiente de dilatación lineal 19.3 °C ·10-6

Densidad de corriente 1.87 A/ mm²

Intensidad de corriente 712 A

Distancia entre fases 4 m

1.5.3. Elección del conductor

Los criterios seguidos para la elección del conductor son:

Intensidad máxima admisible

La situación de máxima intensidad se corresponde a la línea a plena carga y la corriente máxima admisible que puede transportar el cable, según RAT, se calcula mediante la expresión:

$$I_{adm} = D \cdot S \cdot K$$

Donde:

D: Densidad de corriente reglamentaria admisible según sección en A/mm²

S: Sección del conductor en mm²

K: Coeficiente dependiente de la composición del cable, 0,95 para 54+7 según RAT

Sustituyendo se obtiene:

$$I_{adm} = 676,85 A > I_{220 L}$$

Se verifica que la intensidad máxima admisible del conductor es superior a la corriente máxima de la instalación.

Intensidad de cortocircuito máxima admisible

La corriente máxima de cortocircuito admisible por un cable se calcula mediante la expresión:

$$I_{cc\;adm} = \frac{K \cdot S}{\sqrt{t}}$$

Donde:

K: Coeficiente dependiente del tipo de conductor, 93 para Aluminio

S: Sección del conductor en mm²

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 15

t: Duración del cortocircuito en segundos

Sustituyendo se obtiene:

$$I_{cc\ adm} = 50,11\ kA > 40\ kA$$

Se verifica que la intensidad máxima de cortocircuito a soportar es superior a la de diseño del sistema.

1.6. Cálculo de efecto corona

Para evitar que se produzca el efecto corona, la tensión del conductor ha de ser inferior a la tensión disruptiva del aire.

El cálculo del campo eléctrico crítico (Ec) para el caso de conductores cilíndricos paralelos se rige por la fórmula de Peek, considerando el gradiente crítico disruptivo del aire igual a 30 kV/cm:

$$E_0 = 30 \cdot m_0 \cdot \delta \cdot \left(1 + \frac{0,301}{\sqrt{r \cdot \delta}}\right)$$

Siendo:

mo = 1, coeficiente de irregularidad del conductor que toma el valor de 1 para tubo cilíndrico y liso.

 δ = densidad relativa del aire.

r = radio exterior del conductor en cm;

La SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV se encuentra a una altura sobre el nivel del mar de 310 m, por lo que se consideran 732 mm Hg de presión. Sustituyendo se obtiene δ =0,95.

Se obtiene un valor máximo de campo de

Embarrado: $E_0 = 31,64 \, kV/cm$

GULL Simplex: $E_0 = 28,99 \text{ kV/cm}$

Siendo el valor eficaz:

Embarrado:
$$E_{0f} = \frac{E_0}{\sqrt{2}} = 22,37 \text{ kV/cm}$$

GULL Simplex: $E_{0f} = 20,50 \text{ kV/cm}$

El gradiente de tensión superficial del conductor se calcula mediante la siguiente expresión:

$$g = \frac{V_{f-t}}{R \cdot n \cdot \ln(DMG/RMG)}$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 16

Siendo

V_{f-t}= tensión del conductor entre fase y tierra

n= número de conductores por fase

DMG = distancia media geométrica entre conductores en cm.

RMG = radio medio geométrico del conductor en cm. Para el caso de líneas símplex o tubos, será igual a su radio. Para el caso de dúplex, será igual a $\sqrt{(r \cdot s)}$, siendo r el radio de un conductor y s la separación del dúplex.

Se obtiene para cada caso:

Embarrado: $g = 4,02 \, kV/cm$

 $GULL \ Simplex: g = 16,73 \ kV/cm$

El efecto corona no se producirá si Eof > g; cumpliéndose esta relación para todos los casos estudiados.

Los cálculos anteriores se hicieron en base a un tiempo seco en la subestación. Para evaluar el caso de un tiempo húmedo, se multiplicarán los valores obtenidos anteriormente por un coeficiente meteorológico igual a 0,8. Según esto, se obtienen los siguientes valores:

Embarrado:
$$E'_{0f} = 0.8 \frac{E_0}{\sqrt{2}} = 17.90 \text{ kV/cm}$$

GULL Simplex: $E'_{0f} = 16,40 \text{ kV/cm}$

Se comprueba que, aun así, que los valores están por encima del gradiente de tensión superficial.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 17

2. ESTIMACIÓN DE CORRIENTES DE CORTOCIRCUITO

Parámetros de red (REE):

Obtenidos a partir del documento público facilitado por REE "Informe Anual de la Corriente de Cortocircuito en la red de transporte del Sistema Eléctrico Peninsular en el año 2023" para el nudo de la Subestación SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV:

Potencia de cortocircuito trifásica
 9.618 MVA

Intensidad de cortocircuito trifásica
 13,9 kA

Potencia de cortocircuito monofásica
 7.244 MVA

Intensidad de cortocircuito monofásica
 10.5 kA

<u>Parámetros de Línea LAAT 400 kV SET PRERUEDA PROMOTORES 400/220 kV – SET RUEDA DE JALÓN 400 kV (REE):</u>

Potencia a transportar (MW)
 249,3

Conductor
 SC Dúplex LA-380 (GULL)

• Longitud (km) 0,376

Impedancia línea aérea 0,0166+0,0568j

Para obtener las intensidades de cortocircuito en cabecera de SET PRERUEDA PROMOTORES 400/220 kV (punto más desfavorable de la instalación) se tendrán en consideración la impedancia de red y de línea.

Se considerarán los siguientes tipos de cortocircuitos en SET PRERUEDA PROMOTORES 400/220 kV:

- Trifásico
- Monofásico (Fase a tierra)

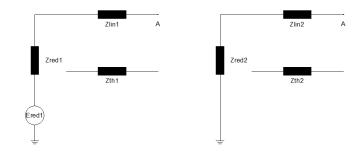
Las hipótesis de cálculo para el estudio de cortocircuitos basado en el método de las componentes simétricas son:

- El sistema eléctrico previo a la falta responde con un sistema trifásico equilibrado.
- Durante el cortocircuito no habrá cambio en el tipo de cortocircuito.
- Todos los cortocircuitos serán francos y se ignorarán las resistencias de arco.
- Se despreciará la susceptancia de la línea.
- Se considerarán las tensiones nominales a efectos de cálculo de las impedancias equivalentes.

Para obtener las intensidades de cortocircuito en cabecera de SET PRERUEDA PROMOTORES 400/220 kV (punto más desfavorable de la instalación) se tendrán en consideración la impedancia de red y de línea.

DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

abilitación co ºººº


2/5 2025

VISADO: 202501013
Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY]

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 18

Así pues, el equivalente de Thevenin para la secuencia directa (1) e inversa (2) se puede obtener según la siguiente ecuación:

$$Z_{TH1} = Z_{TH2} = Z_{red1} + ZI_{in1}$$
, donde:

$$Z_{\text{red1}} = C \cdot j U^2 / S_{\text{CC}} = 1, 1 \cdot j 400^2 / 9618 = 18,30 \Omega$$

$$X_{red1} = Z_{red1} \cdot j0,995 = 18,21j$$

$$R_{red1} = Z_{red1} \cdot 0, 1 = 1,83$$

$$Z_{red1}=1,83+18,21\Omega$$

Sustituyendo se obtiene

$$Z_{TH1} = Z_{TH2} = 1.85 + 18.26j \Omega$$

La intensidad de cortocircuito trifásico en el punto A será, por tanto:

$$I_{cc3} = C \cdot \frac{U_N}{\sqrt{3} \cdot |Z_{TH1}|} = 1.1 \cdot \frac{400}{\sqrt{3} \cdot 18.36} = 13.84 \ kA$$

Para el cálculo de la impedancia homopolar se debe considerar que:

- Impedancias homopolares de líneas aéreas AT se corresponden con un valor igual al triple del valor de sus impedancias en secuencia directa.
- La impedancia de la red en secuencia homopolar es cero.

Por tanto, el equivalente en secuencia homopolar sabiendo que ZTHO = 3 · ZTH será:

$$Z_{THO} = 5,54+54,79j \Omega$$

La intensidad de cortocircuito monofásico será, por tanto:

$$I_{cc0} = C \cdot \frac{\sqrt{3} \cdot U_N}{|2 \cdot Z_{TH1} + Z_{TH0}|} = 1,1 \cdot \frac{\sqrt{3} \cdot 400}{91,79} = 8,30 \text{ kA}$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

novotec

Página 19

3. RED DE TIERRAS

3.1. RED DE TIERRAS INFERIORES

Para el cálculo de la red de tierras se tendrán en cuenta los valores máximos de tensiones de paso contacto que establece el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión, en su artículo ITC-RAT 13, así como la norma IEEE-80-2013: "IEEE Guide for Safety in AC Substation Grounding".

La tensión máxima de contacto aplicada, en voltios, que se puede aceptar sobre un cuerpo humano, se determina en función del tiempo de duración del defecto, según la expresión:

$$V = \frac{k}{t^n}$$

Siendo

k = 72 y n=1, para tiempo $\leq 0.9 \text{ s}$.

t = 0.5 s, tiempo de despeje de falta.

Las máximas tensiones de paso y contacto admisibles en la instalación se obtienen mediante las ecuaciones:

• Tensión de paso:

$$V_p = 10U_{ca} \cdot \left(1 + \frac{2R_{a1} \cdot 6 \cdot \rho_s}{1000}\right)$$

• Tensión de contacto:

$$V_c = U_{ca} \cdot \left(1 + \frac{\frac{R_{a1}}{2} \cdot 1, 5 \cdot \rho_s}{1000}\right)$$

3.1.1. Resistividad del terreno

El terreno se ha modelado como terreno monocapa de 200 Ω m de resistividad. La parcela se terminará con una capa de grava uniforme de 10 cm de espesor y resistividad superficial de 3000 Ω m.

3.1.2. Características del conductor

El conductor de tierra a instalar será cable desnudo de Cu de 120 mm², formando una retícula enterrada a 0,6 m por debajo del nivel de explanación.

Página 20

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Las conexiones entre los conductores de la malla se realizarán con soldadura aluminotérmica con alto poder de fusión.

3.1.3. Tensiones de Paso y Contacto Máximas Admisibles

Datos de cálculo utilizados:

,5 s

• Resistividad de la capa superficial de grava (
$$\rho_s$$
) 3000 Ω m

$$C_s = 1 - 0.106 \cdot \left(\frac{1 - \frac{\rho}{\rho_s}}{2h_s + 0.106} \right)$$

• Resistencia equivalente del calzado (
$$R_{a1}$$
) 2000 Ω

Sustituyendo valores en las ecuaciones dadas por RAT:

$$V_p = 10 \cdot 204 \cdot \left(1 + \frac{2 \cdot 2000 + 6 \cdot 0,677 \cdot 3000}{1000}\right) = 35048 \, V_p$$

$$V_c = 204 \cdot \left(1 + \frac{\frac{2000}{2} + 1.5 \cdot 0.677 \cdot 3000}{1000}\right) = 1029 V$$

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Según IEEE-80 dichos valores son (para una persona de 70 kg):

Tensión de paso:

$$E_p = (1000 + 6 \cdot C_s \cdot \rho_s) \cdot \frac{0.157}{\sqrt{t_s}} = 2926 V$$

Tensión de contacto:

$$E_c = (1000 + 1.5 \cdot C_s \cdot \rho_s) \cdot \frac{0.157}{\sqrt{t_s}} = 828 V$$

3.1.4. Cálculo de la Red de Tierras

3.1.4.1. Resistencia de Puesta a Tierra:

El valor de falta monofásica se ha estimado de 8,3 kA.

Para el dimensionado del conductor empleado en la red de puesta a tierra, se ha considerado la intensidad de falta máxima. Considerando una duración de defecto de 1 s, resulta una sección de:

$$S = \frac{8300}{160 \cdot 1.2} = 43,24 \ mm^2$$

Siendo

160 A/mm², por ser conductor de cobre.

1,2, por considerar sin riesgo de incendio.

Teniendo en cuenta que la corriente en la malla, por conductor, es la mitad de la estimada, dado que se conduce al menos por dos conductores, sería válida una sección de ½ de la calculada.

No obstante, se proyecta conductor de 120 mm² normalizado, a pesar de tratarse de una sección mayor a la necesaria, permitiendo así la previsible evolución de los niveles de falta del sistema.

Según IEEE 80, la resistencia de la red se calcula como:

$$R_g = \rho \cdot \left(\frac{1}{L_M} + \frac{1}{\sqrt{20A}} \cdot \left(1 + \frac{1}{1 + H\sqrt{20/A}} \right) \right)$$

Siendo

 ρ =200 Ω ·m, resistividad del terreno.

 L_M = 4223 m, longitud de conductor enterrado.

H = 0,6 m, profundidad de enterramiento.

 $A = 10423 \text{ m}^2$, superficie ocupada por la malla.

Sustituyendo los valores en la expresión se obtiene:

$$R_{\rm g} = 0.91 \ \Omega$$

Para una malla compuesta por cable de Cu de 120 mm² de sección y un diámetro de 0,014 m.

3.1.4.2. Intensidad de Defecto a Tierra:

Se considera a efectos de tensiones aplicadas de paso y contacto, el 70% de la intensidad de corriente de diseño de puesta a tierra para una tensión de 400 kV y un incremento del 3% debido a la asimetría de la falta, según ITC-RAT-13.

$$I_g = 8.3 \cdot 0.7 \cdot 1.03 = 6 \, kA$$

3.1.4.3. Evaluación de Tensiones de Paso y Contacto:

Datos de cálculo:

•	Resistividad del terreno (ρ)	200 Ω ·m
•	Espaciado medio entre conductores (D)	6 m
•	Profundidad de enterramiento del conductor (h)	0,6 m
•	Diámetro del conductor (d)	0,014 m
•	Longitud del conductor enterrado (L)	4223 m
•	Intensidad de defecto (Ig)	6 kA

Según las fórmulas desarrolladas en el estándar IEEE 80, se obtienen los siguientes valores:

Factor de corrección por profundidad de enterramiento de la malla:

$$K_h = \sqrt{1+h} = 1,26$$

Factor de corrección por geometría de la malla:

$$K_i = 0.644 + 0.148 \cdot n$$

Página 23

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

ANEXO 01: CÁLCULOS JUSTIFICATIVOS

Donde

 $n = n_a \cdot n_b \cdot n_c \cdot n_d$

$$n_a = \frac{2L_c}{L_p}; \ n_b = \sqrt{\frac{L_p}{4\sqrt{A}}}; \ n_c = \left(\frac{L_x L_y}{A}\right)^{\frac{0.7A}{L_x L_y}}; \ n_d = \frac{D_m}{\sqrt{{L_x}^2 + {L_y}^2}}$$

Siendo

 L_c = 4223·m, longitud del conductor de la malla (sin picas).

L_p = 422 ·m, longitud del perímetro de la malla.

 $A = 10423 \text{ m}^2$, superficie ocupada por la malla.

Lx = 144 m, longitud máxima del conductor en el eje X.

L_y = 80,5 ·m, longitud máxima del conductor en el eje Y.

 D_m = 165 m, máxima distancia entre dos puntos. Se obtiene:

$$n_a = 20,01$$
; $n_b = 1,02$; $n_c = 1,07$; $n_d = 1$

Por tanto:

$$n = 21,75$$

$$K_{\rm i} = 3.86$$

• Factor de corrección por ubicación de electrodos tipo varilla:

$$K_{ii}=1$$

• Factor de espaciamiento para tensión de malla:

$$K_m = \frac{1}{2\pi} \cdot \left[\ln \left(\frac{D^2}{16hd} + \frac{(D+2h)^2}{8Dd} - \frac{h}{4d} \right) + \frac{K_{ii}}{K_h} \ln \left(\frac{8}{\pi (2n-1)} \right) \right] = 0.57$$

• Factor de espaciamiento para tensión de paso:

$$K_s = \frac{1}{\pi} \cdot \left[\frac{1}{2h} + \frac{1}{D+h} + \frac{1}{D} \cdot (1 - 0.5^{n-2}) \right] = 0.37$$

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 24

De acuerdo con la IEEE-80, la fórmula que permite obtener los valores de las tensiones de paso y contacto son:

$$E_p = \rho \cdot K_s \cdot K_i \cdot \frac{I_g}{L_c} = 401 \, V < 2926 \, V$$

$$E_c = \rho \cdot K_m \cdot K_i \cdot \frac{I_g}{L_c} = 625 \, V < 898 \, V$$

Se observa que los valores obtenidos son menores a los máximos admisibles por IEEE-80 y RAT.

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Anexo 02: Estudio Gestión de Residuos Enero 2025

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE

1.	AN	TECEDENTES	2	ADO
2.	OBJETO			PRINCE
3.	SITI	UACIÓN Y DESCRIPCIÓN GENERAL DEL PROYECTO	3	ES DEL 1
4.	DES	SCRIPCIÓN GENERAL DE LOS TRABAJOS	3	USTRIAL
5 .	EST	IMACIÓN DE RESIDUOS A GENERAR	4	OS IND IAS
6.	ME	DIDAS DE PREVENCIÓN DE GENERACIÓN DE RESIDUOS	5	TECNIC ASTUR
7.	ME	JEIO UACIÓN Y DESCRIPCIÓN GENERAL DEL PROYECTO SCRIPCIÓN GENERAL DE LOS TRABAJOS UMACIÓN DE RESIDUOS A GENERAR DIDAS DE PREVENCIÓN DE GENERACIÓN DE RESIDUOS DIDAS DE SEPARACIÓN, MANEJO Y ALMACENAMIENTO DE RESIDUOS SEGREGACIÓN	7	MEROS
7	.1.	SEGREGACIÓN	8	DE INGE
7	.2.	ALMACENAMIENTO	9	FICIAL
7	.3.	TRASLADO1	0	EGIO 0
8.	DE:	SEGREGACION	2	<u>5</u>
8	.1.	RESIDUOS NO PELIGROSOS	2	20
8	.2.	RESIDUOS PELIGROSOS	3	
9.	VA	LORACIÓN DEL COSTE PREVISTO DE GESTIÓN1	5	
9	.1.	PRESUPUESTO DETALLADO	6	

Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional

2/5 2025

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 2

1. ANTECEDENTES

EMPECINADO I ENERGY S.L.U. como productor de residuos lleva a cabo el presente Estudio de Gestión de Residuos de Construcción y Demolición de acuerdo a lo establecido en el artículo 4 del Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de residuos de construcción y demolición. Según dicha normativa el contenido mínimo del estudio ha de ser:

- Una estimación de la cantidad, expresada en toneladas y metros cúbicos, de los residuos de construcción y demolición que se generarán en la obra bajo la codificación de la Ley 7/2022.
- Las medidas para la prevención de residuos.
- Las operaciones de reutilización, valorización o eliminación.
- Las medidas para la separación de los residuos en obra, considerando básicamente las fracciones:
 - Hormigón.
 - Ladrillos, tejas, cerámicos.
 - Metal.
 - Madera.
 - Vidrio.
 - Plástico.
 - Papel y cartón.
- Planos de las instalaciones previstas para el almacenamiento, manejo, separación de los residuos.
- Las disposiciones del pliego de prescripciones técnicas en relación al almacenamiento, manejo, separación y en su caso, otras operaciones de gestión dentro de la obra.
- Valoración del coste previsto para la gestión de los residuos de construcción y demolición.

Según el Real Decreto 105/2008, de 1 de febrero, tiene por objeto establecer el régimen jurídico de la producción y gestión de los residuos de construcción y demolición, con el fin de fomentar, por este orden, su prevención, reutilización, reciclado y otras formas de valorización, asegurando que los destinados a operaciones de eliminación reciban un tratamiento adecuado, y contribuir a un desarrollo sostenible de la actividad de construcción.

Los residuos de construcción y demolición (RCD) se clasifican en:

RCD de Nivel I: Residuos de construcción y demolición excedentes de la excavación y los movimientos de tierras de las obras cuando están constituidos por tierras y materiales pétreos no contaminados.

VISADO: 202501013

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 3

• RCD de Nivel II: Residuos de construcción y demolición no incluidos en los de nivel I, generados principalmente en las actividades propias del sector de la construcción, de la demolición, de la reparación domiciliaria y de la implantación de servicios.

2. OBJETO

El presente Estudio de Gestión de Residuos tiene como objeto establecer las directrices generales para la gestión de los residuos de construcción y demolición generados en la obra a la que se refiere.

Este Estudio se ha elaborado en cumplimiento del Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de la construcción y demolición.

3. SITUACIÓN Y DESCRIPCIÓN GENERAL DEL PROYECTO

Las características generales de la obra para la SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV son:

Localización: La nueva SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV estará ubicada en el **Término Municipal de Rueda de Jalón**, Provincia de Zaragoza, tal como se indica en el plano de situación y emplazamiento.

Promotor: El titular y promotor de la actuación es EMPECINADO I ENERGY S.L.U., CIF B-88442652, con domicilio en Paseo Club Deportivo 1, edificio 13, 28223 Pozuelo de Alarcón, Madrid (España).

Tipo de obra: Ejecución de ampliación de Subestación, en concreto de una posición de línea de 220 kV y embarrado en parque de intemperie de 220 kV.

Existencia o no de demolición: No.

Superficie de la obra: La obra proyectada se realiza dentro de los terrenos de la propia Subestación. La superficie donde se llevará a cabo la obra es de unos **10.005 m²**.

Tiempo estimado: 2 meses.

4. DESCRIPCIÓN GENERAL DE LOS TRABAJOS

En la parcela se procederá a la realización de los trabajos necesarios para la instalación de la ampliación de la subestación. En resumen, se procederá a la realización de las siguientes actuaciones:

- Obra civil y cimentaciones necesarias para la sustentación de la aparamenta a instalar.
- Ejecución de movimiento de tierras para la explanación de la parcela.
- Instalación de nuevo edificio control.
- Ejecución de cerramientos perimetrales.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 4

• Ejecución de viales.

A continuación, se resumen los trabajos y materiales a considerar en función de la generación de residuos:

- Instalaciones de acceso y seguridad.
- Ejecución de instalaciones de alumbrado, fuerza, seguridad, contraincendios...
- Instalación de armarios y equipos de control.
- Cimentación de aparamenta.
- Instalación de aparamenta de intemperie de 220 kV.
- Instalación del sistema de control y protección necesario.
- Canalizaciones eléctricas de potencia y control.

5. ESTIMACIÓN DE RESIDUOS A GENERAR

Según la Lista Europea de Residuos (LER) (Ley 7/2022), los residuos se clasifican mediante códigos de seis cifras denominados códigos LER. A continuación, se enumeran los residuos con su código LER que se pueden generar en la obra de una Subestación:

RCD Nivel I: Tierras limpias y materiales pétreos. 17.05.04

Procedentes del movimiento de tierras necesario para realizar las zanjas, las cimentaciones, nivelaciones de terreno, etc.

- RCD Nivel II
 - RCD de naturaleza pétrea:
 - o 17.01.01. Hormigón.
 - o 17.01.02. Ladrillos.
 - o 17.09.04. Residuos mezclados de construcción que no contengan sustancias peligrosas.
 - RCD de naturaleza no pétrea:
 - o 17.02.01 Madera. Incluye los restos de corte, de encofrado, etc.
 - o 17.02.02 Vidrio.
 - o 17.02.03 Plásticos.
 - o 17.04.05. Hierro y acero. Incluye las armaduras de acero o restos de estructuras metálicas, restos de paneles de encofrado, etc.
 - o 17.04.01. Cobre, bronce y latón.
 - o 17.04.11. Cables que no contienen hidrocarburos, alquitrán de hulla u otras sustancias peligrosas.
 - o 17.03.02. Mezclas bituminosas sin alquitrán o hulla.
 - o 16 02 14 Equipos desechados distintos a los de las categorías 16 02 09 a 16 02 13

DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación _c Profesional

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 5

Otros residuos:

- Residuos peligrosos:
- 15.02.02* Absorbentes contaminados. Principalmente serán trapos de limpieza contaminados.
- 15.01.01* Aerosoles
- 15.01.10* Envases vacíos de metal o plástico contaminados.
 - 20.01.01. Papel y cartón. Incluye restos de embalajes, etc.
 - 20.01.39. Plásticos. Material plástico procedente de envases y embalajes de equipos.
 - 20.03.01. Residuos sólidos urbanos (RSU) o asimilables a urbanos. Principalmente son los generados por la actividad en vestuarios, casetas de obra, etc.

6. MEDIDAS DE PREVENCIÓN DE GENERACIÓN DE RESIDUOS

Las medidas de prevención de residuos en la obra están basadas en fomentar, en ese orden, su prevención, reutilización, reciclado y otras formas de valorización, asegurando que los destinados a operaciones de eliminación reciban un tratamiento adecuado, y contribuir a un desarrollo sostenible de la actividad de construcción. Se van a establecer medidas aplicables en las siguientes actividades de la obra:

- Adquisición de materiales.
- Comienzo de la obra.
- Puesta en obra.
- Almacenamiento en obra.

A continuación, se describen cada una de estas medidas:

- Medidas de minimización en la adquisición de materiales.
 - La adquisición de materiales se realizará ajustando la cantidad a las mediciones reales de obra, ajustando lo máximo las mismas, para evitar la aparición de excedentes de material al final de la obra.
 - Se requerirá a las empresas suministradoras a que reduzcan al máximo la cantidad y volumen de embalajes. Se solicitará a los proveedores que el suministro en obra se realice con la menor cantidad de embalaje posible, renunciando a los aspectos decorativos superfluos.
 - Se primará la adquisición de materiales reciclables frente a otros de mismas prestaciones, pero de difícil o imposible reciclado.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 6

- El suministro de los elementos metálicos y sus aleaciones se realizará con las cantidades mínimas y estrictamente necesarias para la ejecución de la fase de la obra correspondiente.
- Los suministros se adquirirán en el momento que la obra los requiera, de este modo, y con unas buenas condiciones de almacenamiento, se evitará que se estropeen y se conviertan en residuos.
- Medidas de minimización en el comienzo de las obras.
 - Se realizará una planificación previa a las excavaciones y movimiento de tierras para minimizar la cantidad de sobrantes por excavación y posibilitar la reutilización de la tierra en la propia obra o emplazamientos cercanos.
- Medidas de minimización en la puesta en obra.
 - En caso de ser necesario excavaciones, éstas se ajustarán a las dimensiones específicas del proyecto, atendiendo a las cotas marcadas en los planos constructivos.

VISADO: 202501013

OLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADA
DE ASTURIAS

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 7

7. MEDIDAS DE SEPARACIÓN, MANEJO Y ALMACENAMIENTO DE RESIDUOS

A continuación, se describe cuál va a ser la gestión de los residuos que pueden generarse en una obra dentro de una Subestación eléctrica, se muestra una tabla con los destinos y tratamiento de cada uno de ellos:

Código LER	Residuo	Tratamiento	Destino
	RESID	DUOS NO PELIGROSOS	
17 01 01	Hormigón	Reciclado / vertedero	Planta reciclaje RCD / vertedero de RCD
17 01 02	Ladrillos	Reciclado / vertedero	Planta reciclaje RCD / vertedero de RCD
17 05 04	Tierras y piedras distintas de las especificadas en el código 17 05 03	Sin tratamiento específico	Restauración / vertedero
17 04 05	Metales: hierro y acero	Valorización	Reciclaje o recuperación de metales y de compuestos metálicos
17 09 04	Residuos mezclados de construcción / demolición que no contengan sustancias peligrosas	Reciclado / vertedero	Planta reciclaje RCD / vertedero de RCD
17 02 01	Madera	Reciclado / Valorización	Planta de reciclaje/Planta de valorización energética
17 02 02	Vidrio	Reciclado / Valorización	Planta de reciclaje/Planta de valorización energética
17 02 03	Plástico	Reciclado / Valorización	Planta de reciclaje RCD / vertedero RCD
17 04 11	Cables que no contienen hidrocarburos, alquitrán de hulla u otras sustancias peligrosas	Reciclado	Planta reciclaje RCD / vertedero de RCD
16 02 14	Equipos desechados distintos a los de las categorías 16 02 09 a 16 02 13	Valorización/eliminación	Planta de tratamiento/Vertedero
15 01 02	Envases de plástico	Recogida mediante sistema integrado de gestión (SIG)	Planta de reciclaje
15 01 01	Envases de papel y cartón	Recogida mediante sistema integrado de gestión (SIG)	Planta de reciclaje
20 03 01	Mezcla de residuos municipales	Valorización / eliminación	Planta de tratamiento / vertedero

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 8

Código LER	Residuo	Tratamiento	Destino				
	RESIDUOS PELIGROSOS						
15 02 02*	Absorbentes contaminados	Tratamiento/Eliminación en vertedero de RP	Planta de tratamiento/vertedero de residuos peligrosos				
15 01 01*	Aerosoles vacíos	Tratamiento/Eliminación en vertedero de RP	Planta de tratamiento/vertedero de residuos peligrosos				
15 01 10*	Envases vacíos de metal o plástico contaminado	Tratamiento/Eliminación en vertedero de RP	Planta de tratamiento/vertedero de residuos peligrosos				

7.1. Segregación

El Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición, en su artículo 5 establece que se realizará una segregación por fracciones, en caso de que dichas fracciones de forma individualizada superen las siguientes cantidades:

Hormigón: 80 t

Ladrillos, tejas y materiales cerámicos: 40 t

Metales (incluidas sus aleaciones): 2 t

Madera: 1 t

Vidrio: 1 t

Plástico: 0,5 t

Papel y cartón: 0,5 t

Dicha segregación se realizará dentro de la propia obra, en caso de no haber espacio físico suficiente, se podrá realizar la segregación por un gestor autorizado en una instalación exterior, disponiendo entonces de una documentación acreditativa.

En caso de no alcanzar las cantidades mínimas de cada fracción, dichos residuos se pueden almacenar conjuntamente pero siempre de forma señalizada y dentro de los espacios preparados para ello.

La segregación de los residuos es obligatoria en ciertos casos.

- En el caso de Residuos Peligrosos (RP). siempre es obligatorio la separación en origen. No mezclar ni diluir residuos peligrosos con otras categorías de residuos peligrosos ni con otros residuos, sustancias o materiales.
- En el caso de Residuos de Construcción y Demolición (RCD), y según el RD 105/2008, de 1 de febrero, la segregación ha de realizarse siempre que las siguientes fracciones, de forma individualizada para cada fracción, supere las siguientes cantidades:

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 9

Hormigón: 80 t

Ladrillos, tejas, cerámico: 40 t

Metal: 2 t

Madera: 1 t

Vidrio: 1 t

Plástico: 0,5 t

Papel y cartón: 0,5 t

Dicha segregación se realizará dentro de la propia obra, en caso de no haber espacio físico suficiente, se podrá realizar la segregación por un gestor autorizado en una instalación exterior, siempre que el gestor obtenga la Documentación Acreditativa de haber cumplido en nombre del productor con su obligación de segregación.

En caso de no alcanzar las cantidades mínimas de cada fracción, dichos residuos se pueden almacenar conjuntamente pero siempre de forma señalizada y dentro de los espacios preparados para ello.

Los residuos valorizables siempre se van a segregar, y se realizará en contenedores o en acopios que estarán correctamente señalizados para que se puedan almacenar de un modo adecuado.

El responsable de la obra adoptará las medidas necesarias para evitar el depósito de residuos ajenos a la propia obra, igualmente deberá impedir la mezcla de residuos valorizables con aquellos que no lo son.

Los contenedores o los sacos industriales para almacenamiento de residuos han de estar en buenas condiciones. En los mismos deberá figurar, de forma visible y legible, la razón social, CIF, teléfono y número de inscripción en el registro de transportistas de residuos.

Los residuos generados en las casetas de obra producidos en tareas de oficina, vestuarios, comedores, etc. tendrán la consideración de Residuos Sólidos Urbanos y se gestionarán como tal según estipule la normativa reguladora de dichos residuos en el área de obra.

7.2. Almacenamiento

Cada residuo será almacenado en la obra en un lugar habilitado y destinado a tal fin, según se vayan generando.

Los residuos no peligrosos e inertes (RNP) se almacenarán temporalmente en contenedores metálicos o sacos industriales según el volumen generado previsto, en una ubicación previamente designada y conocida por el personal de obra (ver plano adjunto).

También se depositarán en contenedores o en sacos independientes los residuos valorizables como metales o maderas para facilitar su posterior gestión.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 10

Todos los contenedores o sacos industriales que se utilicen en las obras tendrán que estar identificados según el tipo de residuo que van a contener. Estos contenedores tendrán que estar marcados además con el titular del contenedor, su razón social y su código de identificación fiscal, además del número de inscripción en el registro de transportistas de residuos. El responsable de la obra adoptará medidas para evitar que se depositen residuos ajenos a la propia obra.

Los residuos sólidos urbanos (RSU) se recogerán en contenedores específicos para ello, se ubicarán donde determine la normativa municipal. Se puede solicitar permiso para el uso de contenedores cercanos o contratar el servicio de recogida con una empresa autorizada por el ayuntamiento.

Los residuos cuyo destino sea el depósito en vertedero autorizado deberán ser trasladados y gestionados según marca la legislación.

Los residuos peligrosos (RP) que se generen en la obra se almacenarán en recipientes cerrados y señalizados, bajo cubierto. El almacenamiento se realizará siguiendo la normativa específica de residuos peligrosos, es decir, se almacenarán en envases convenientemente identificados especificando en su etiquetado el nombre del residuo, código LER, nombre y dirección del productor y pictograma de peligro. Serán gestionados posteriormente mediante gestor autorizado.

El almacenamiento, envasado y etiquetado de los residuos peligrosos se hará en el lugar de producción antes de su recogida y transporte con arreglo a la legislación vigente.

Se deberá tener constancia de las autorizaciones de los gestores de los residuos, de los transportistas y de los vertederos.

7.3. Traslado

Con carácter previo al inicio de un traslado se debe disponer de un contrato de tratamiento. Este, deberá establecer al menos las especificaciones de los residuos, las condiciones del traslado y las obligaciones de las partes cuando se presenten incidencias. El contrato de tratamiento contendrá, al menos, los siguientes aspectos:

- Cantidad estimada de residuos que se va a trasladar.
- Identificación de los residuos mediante su codificación LER.
- Periodicidad estimada de los traslados.
- Cualquier otra información que sea relevante para el adecuado tratamiento de los residuos.
- Tratamiento al que se van a someter los residuos, de conformidad con la Ley 7/2022.
- Obligaciones de las partes en relación con la posibilidad de rechazo de los residuos por parte del destinatario.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 11

Los residuos deberán ir acompañados del documento de identificación desde el origen hasta su recepción en la instalación de destino. El documento de identificación deberá incluir el contenido establecido en el ANEXO I del RD 553/2020.

- 1. Número de documento de identificación.
- 2. Número de notificación previa.
- 3. Fecha de inicio del traslado.
- 4. Información relativa al operador del traslado.
- 5. Información relativa al origen del traslado.
- 6. Información relativa al destino del traslado.
- 7. Características del residuo que se traslada.
- 8. Información relativa a los transportistas que intervienen en el traslado.
- 9. Otras informaciones.

Además de ello, se establecen los siguientes condicionantes:

- Antes de iniciar un traslado de residuos el operador cumplimentará el documento de identificación, con el contenido del anexo I, que entregará al transportista.
- Una vez efectuado el traslado, el transportista entregará el documento de identificación al destinatario de los residuos. Tanto el transportista como el destinatario incorporarán la información a su archivo cronológico y conservarán una copia del documento de identificación firmada por el destinatario en el que conste la entrega de los residuos.
- El destinatario dispondrá de un plazo de treinta días desde la recepción de los residuos para efectuar las comprobaciones necesarias y <u>para remitir al operador el documento de</u> identificación, indicando la aceptación o rechazo de los residuos, de conformidad con lo previsto en el contrato de tratamiento.
- En el caso de residuos sometidos a notificación previa, el destinatario del traslado de residuos remitirá, en el plazo de treinta días desde la entrega de los residuos, el documento de identificación al órgano competente de la comunidad autónoma de origen y de destino,
- En el caso de traslados de residuos no sometidos al procedimiento de notificación previa podrá hacer la función de documento de identificación un albarán, una factura u otra documentación prevista en la legislación aplicable.

Notificación de traslado. Además de los requisitos generales de traslado, quedan sometidos al requisito de Notificación Previa los traslados de residuos destinados a eliminación, residuos destinados a instalaciones de incineración clasificadas como valorización cuando superen los 20kg y los residuos destinados a valorización identificados con el código LER 20 03 01.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 12

Antes de realizar un envío se deberá notificar con 10 días de antelación a las Autoridades Competentes (Consejería si el transporte se realiza dentro del territorio de esta Comunidad, y también al Ministerio de Medio Ambiente si el transporte afecta a más de una Comunidad Autónoma).

En el caso de realizarse la obra en la Comunidad de Madrid, en dicha comunidad existe la Hoja de control de Pequeñas cantidad de residuos (según la Orden 2029/2000, de 26 de mayo) para la entrega de pequeñas cantidades del mismo tipo de residuo a un transportista, para su traslado a las instalaciones de otro gestor, siempre que se realice por un mínimo de dos productores.

DOCUMENTACIÓN QUE SE GENERARÁ EN LA GESTIÓN DE RESIDUOS PELIGROSOS:

Fase	Documentación	Legislación
Inicio de obra	Plan de Gestión de Residuos	
inicio de obra	Comunicación previa al inicio de la actividad (NIMA)	Ley 7/2022
	Datos Gestor de Residuos Peligrosos	
	Datos transportista de Residuos Peligrosos	
	Archivo cronológico (*)	Ley 7/2022
Fase de obra	Contrato de tratamiento	RD 553/2020
rase de obia	Documento de identificación	RD 553/2020
	Comunicación traslado de RP de una comunidad a otra	Ley 7/2022
	Hoja de control de Pequeñas cantidad de residuos (solo en la Comunidad de Madrid)	Orden 2029/2000

^(*) Se deben guardar durante al menos tres años.

8. DESTINOS FINALES DE LOS RESIDUOS GENERADOS

8.1. Residuos no peligrosos

Según requiere la normativa, se prohíbe el depósito en vertedero de residuos de construcción y demolición que no hayan sido sometidos a alguna operación de tratamiento previo.

El poseedor de los residuos estará obligado, mientras se encuentre en su poder, a mantenerlos en las condiciones adecuadas de higiene y seguridad, así como a evitar la mezcla de fracciones ya seleccionadas que impida o dificulte su posterior valorización o eliminación.

Se debe asegurar que los transportistas o gestores autorizados que se contraten estén autorizados correctamente dentro de la/s comunidad/es autónoma/s de actuación. Se realizará un estricto control documental de modo que los transportistas y los gestores deberán aportar la documentación de cada retirada y entrega en destino final. Toda esta documentación será recopilada por el poseedor del residuo (contratista) y entregada al productor (promotor) al final de la obra.

PEL

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 13

Las tierras que puedan tener un uso posterior para jardinería o recuperación de suelos degradados serán retiradas y almacenadas durante el menor tiempo posible, en condiciones de altura no superior a 2 metros.

El depósito temporal de residuos se realizará en contenedores, sacos o bidones adecuados a la naturaleza y al riesgo de los residuos generados.

La duración del almacenamiento de los residuos no peligrosos en el lugar de producción será inferior a 2 años cuando se destinen a valorización y a 1 año cuando se destinen a eliminación.

8.2. Residuos peligrosos

Cualquier persona física o jurídica cuya industria o actividad produzca residuos peligrosos ha de presentar una Comunicación previa al inicio de la actividad según la Ley 7/2022. Si la comunicación reúne los requisitos establecidos, la comunidad autónoma procederá a su inscripción en el registro, no emitiendo resolución alguna. Se les asignará un NIMA (Número de Identificación Medioambiental).

Los residuos peligrosos siempre se separarán en origen.

Los residuos peligrosos se almacenarán temporalmente siguiendo las siguientes condiciones: Reglamento de Almacenamiento de Productos Químicos (RD 656/2017), de 23 de junio, y sus Instrucciones Complementarias MIE APQ 0 a 10.

Definir una zona específica.

No superar los 6 meses de almacenamiento (en supuestos excepcionales, el órgano competente de las Comunidades Autónomas donde se lleve a cabo dicho almacenamiento, por causas debidamente justificadas y siempre que se garantice la protección de la salud humana y el medio ambiente, podrá modificar este plazo).

- ¿Dónde situarlo?
 - En el exterior bajo cubierta,
 - Dentro de la nave.
 - O en intemperie en envases herméticamente cerrados.
- Condicionantes de la zona de almacenamiento temporal:
 - Suelo impermeabilizado: cemento u hormigón.
 - Cubierto (que evite la entrada de agua de la lluvia).
 - Sobre un cubeto o bordillo en caso de residuos líquidos o fluidos.
 - Alejado de la red de saneamiento.

Página 14

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Traslado de RP para almacenarlos en otro lugar: Está prohibido transportar los RP fuera de la obra para almacenarlos en otra instalación, aunque sea propia.

Los residuos peligrosos se **envasarán** con las siguientes condiciones:

- 1 recipiente/cada tipo de residuo.
- Cada recipiente identificado con etiquetas y adecuado para cada residuo.
- Recomendación en caso de duda: utilizar recipiente proporcionados por el gestor de cada tipo de residuo.

En las etiquetas identificativas de los residuos peligrosos aparecerá la siguiente información (art. 14.2 de RD 833/88, que ha sido modificado: El código y la descripción del residuos de acuerdo con la lista establecida en la Decisión 2014/955/UE y el código y la descripción de la característica de peligrosidad de acuerdo con la Ley 7/2022:

Nombre, dirección y teléfono de productor o poseedor de los residuos

- Fechas de envasado.
- La naturaleza de los riesgos que presentan los residuos se indicará mediante los pictogramas descritos en el Reglamento (CE) No 1272/2008 del Parlamento y del Consejo de 16 de diciembre de 2008 sobre clasificación, etiquetado y envasado de sustancias y mezclas, y por el que se modifican y derogan las Directivas 67/548/CEE y 1999/45/CE y se modifica el Reglamento (CE) no 1907/2006.
- Cuando se asigne a un residuo envasado más de un indicador de un pictograma se tendrán en cuenta los criterios establecidos en el artículo 26 del Reglamento (CE) nº1272/2008.
- La etiqueta debe ser firmemente fijada sobre el envase, debiendo ser anuladas, si fuera necesario, indicaciones o etiquetas anteriores de forma que no induzcan a error o desconocimiento del origen y contenido del envase en ninguna operación posterior del residuo. El tamaño de la etiqueta debe tener como mínimo las dimensiones de 10 × 10 cm.
- No será necesaria una etiqueta cuando sobre el envase aparezcan marcadas de forma clara las inscripciones indicadas, siempre y cuando estén conformes con los requisitos exigidos
- Se rellenará la fecha de inicio del almacenamiento en la etiqueta.

Se dispondrá de un archivo físico o telemático donde se recoja por orden cronológico la cantidad, naturaleza, origen, destino y método de tratamiento de los residuos; cuando proceda se inscribirá también, el medio de transporte y la frecuencia de recogida. En el Archivo cronológico se incorporará la información contenida en la acreditación documental de las operaciones de producción y gestión de residuos.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 15

9. VALORACIÓN DEL COSTE PREVISTO DE GESTIÓN

Los subtotales del coste de gestión de los residuos de la obra SET AMPLIACIÓN PRE-RUEDA PROMOTORES se recogen en la siguiente tabla:

Tipo de residuo	Coste (€)			
Tipo I. Residuos vegetales procedentes del desbroce del terreno				
Coste gestión	62,59 €			
Tipo II. Tierras y pétreos de la excavación				
Coste gestión	225,00 €			
Tipo III. Residuos de naturaleza pétrea resultantes de la ejecución de la obra (ni tierras, ni pétre excavación)	os de la			
Coste gestión	65,94€			
Tipo IV. Residuos de naturaleza no pétrea resultantes de la ejecución de la obra				
Coste gestión	250,71 €			
Tipo V. Residuos Potencialmente peligrosos y otros				
Coste gestión	347,38 €			
Total coste gestión residuos en obra nueva	951,62€			

El presupuesto para la gestión de residuos del proyecto SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV asciende a la cantidad de NOVECIENTOS CINCUENTA Y UN EUROS CON SESENTA Y DOS CÉNTIMOS (951,62 €).

Col. nº 06551 JULIAN GARCIA SANCHEZ

OLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADO DE ASTURIAS

2/5 2025

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 16

9.1. Presupuesto detallado

Tipo I. Residuos vegetales procedentes del desbroce del terreno.

Código	Residuo	Cantidad (t)	Densidad (t/m³)	Volumen (m³)	P. Unitario (€/t)	Importe (€)
02 01 07	Residuos de la silvicultura, 02 01 07	6,26	0,02	312,96	10	62,59

Tipo II. Tierras y pétreos de la excavación

Código	Residuo	Cantidad (t)	Densidad (t/m³)	Volumen (m³)	P. Unitario (€/t)	Importe (€)
17 05 04	Tierra y piedras distintas de las especificadas en el código 17 05 03.	75,00	1,5	50,00	3	225,00

Tipo III. Residuos de naturaleza pétrea resultantes de la ejecución de la obra (ni tierras, ni pétreos de la excavación).

Código	Residuo	Cantidad (t)	Densidad (t/m³)	Volumen (m³)	P. Unitario (€/t)	Importe (€)
01 04 08	Residuos de grava y rocas trituradas distintos de los mencionados en el código 01 04 07,	5,01	1,5	3,34	3,5	17,55
17 01 01	Hormigón,	1,85	1,5	1,23	13	24,04
17 01 07	Mezclas de hormigón, ladrillos, tejas y materiales cerámicos distintas de las especificadas en el código 17 01 06.	0,32	1,5	0,21	16	5,05
17 01 02	Ladrillos,	0,80	1,25	0,64	20	15,95
17 05 04	Tierra y piedras distintas de las especificadas en el código 17 05 03.	0,96	1,5	0,64	3,5	3,35
TOTAL	TOTAL					65,94

OLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADA
DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional 2/5 2025

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 17

Tipo IV. Residuos de naturaleza no pétrea resultantes de la ejecución de la obra.

Código	Residuo	Cantidad (t)	Densidad (t/m³)	Volumen (m³)	P. Unitario (€/t)	Importe (€)		
17 03 02	Mezclas bituminosas distintas de las especificadas en el código 17 03 01.	20,71	1	20,71	5	103,55	TÉCNICOS INDUSTRIALES DEL PRINCIPADO SASTURIAS	
17 02 01	Madera.	0,72	1,5	0,48	15	10,77	IL PRI	
17 04 01	Cobre, bronce, latón.	0,72	1,5	0,48	33,5	24,05	ES DE	
17 04 02	Aluminio.	0,24	1,5	0,16	33,5	8,02	STRIAL	SANCHEZ
17 04 03	Plomo.	0,06	2	0,03	33,5	1,94	SINDON S	
17 04 04	Zinc.	0,07	1,5	0,04	33,5	2,19	VICOS	JULIAN GARCIA
17 04 05	Hierro y acero.	0,48	1,5	0,32	33,5	16,03	S TÉCI	LIAN
17 04 06	Estaño.	0,16	2	0,08	33,5	5,34	INGENIEROS TI DE A	
17 04 07	Metales mezclados.	0,12	1,5	0,08	33,5	4,01	INGEN	. n° 06551
17 04 11	Cables distintos de los especificados en el código 17 04 10.	0,24	1,5	0,16	33,5	8,02	<u> </u>	Habilitación col. Profesional
20 01 01	Papel y cartón.	1,20	1,5	0,80	28	33,50	000	oillita fesic
17 02 03	Plástico	1,66	1,5	1,11	20	33,28	COLE	P a
TOTAL				24,45		250,71	2 20	/5)25

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 18

Tipo V. Residuos Potencialmente peligrosos y otros.

Código	Residuo	Cantidad (t)	Densidad (t/m³)	Volumen (m³)	P. Unitario (€/t)	Importe (€)	
20 03 01	Mezclas de residuos municipales.	0,64	0,8	0,80	300	191,44	ICIPADO 同窓は割同
17 05 03*	Tierra y piedras que contienen sustancias peligrosas.	0,19	1,2	0,16	180	34,46	RINCIP
13 08 99*	Residuos no especificados en otra categoría.	0,01	0,6	0,01	351	3,05	S DEL P
15 01 10*	Envases que contienen restos de sustancias pelagrosas o estén contaminados por ellas	0,10	0,6	0,17	351	36,65	USTRIALE
15 02 02*	Absorbentes, materiales de filtración (incluidos los filtros de aceite no especificados en otra categoría), trapos de limpieza y ropas protectoras contaminados por sustancias peligrosas	0,10	0,9	0,12	180	18,80	COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADO DE ASTURIAS
16 06 03*	Pilas que contienen mercurio.	0,004	0,6	0,01	20	0,09	GENIE
17 01 06*	Mezclas o fracciones separadas, de hormigón, ladrillos, tejas y materiales cerámicos, que contienen sustancias peligrosas	0,01	0,9	0,01	351	4,58	DFICIAL DE IN
17 02 04*	Vidrio, plástico y madera que contienen sustancias peligrosas o estén contaminados por ellas.	0,01	0,9	0,01	20	0,26	COLEGIO
08 01 11*	Residuos de pintura y barniz que contienen disolventes orgánicos u otras sustancias peligrosas.	0,01	0,6	0,02	20	0,26	20
17 09 03*	Otros residuos de construcción y demolición (incluidos los residuos mezclados) que contienen sustancias peligrosas.		0,6	0,32	300	57,43	
07 07 01*	Líquidos de limpieza y licores madre acuosos,	0,02	0,6	0,03	20	0,35	
TOTAL				1,67		347,38	

VISADO : 202501013

Col. nº 06551 JULIAN GARCIA SANCHEZ

2/5 2025

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Anexo 03: Estudio de Campos Magnéticos Enero 2025

ANEXO 03: ESTUDIO DE CAMPOS MAGNÉTICOS

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE

1.	INTRODUCCIÓN	2
2.	LIMITACIÓN DE LOS CAMPOS MAGNÉTICOS	2
3.	CONDICIONES DE DISEÑO DE LA INSTALACIÓN	3
4.	CONCLUSIONES OBTENIDAS Y MEDIDAS ADOPTADAS	3

Col. nº 06551 JULIAN GARCIA SANCHEZ

COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADO DE ASTURIAS Habilitación Profesional 2/5 2025

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 2

1. INTRODUCCIÓN

El objeto de este anexo es el análisis de las emisiones magnéticas en el entorno exterior inmediato de la Subestación Eléctrica SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV, con el propósito de comprobar el cumplimiento de los límites establecidos por la normativa vigente.

El estudio comprende el cálculo de los niveles máximos del campo magnético que, por razón de la actividad de la subestación, puedan alcanzarse en su entorno, y su evaluación comparativa con los límites establecidos en la normativa vigente en términos de límites técnicos en relación a las condiciones de protección a las emisiones radioeléctricas y medidas de protección sanitaria establecidas en dicha normativa.

2. LIMITACIÓN DE LOS CAMPOS MAGNÉTICOS

En el RD 1066/2001, se han establecido en el punto 3.1 Niveles de Campo, los niveles de referencia para campos eléctricos y magnéticos, según cuadro adjunto.

Gama de frecuencia	Intensidad de campo E (V/m)	Intensidad de campo H (A/m)	Campo B	Densidad de potencia equivalente de onda plana (W/m²)
0-1 Hz		3,2 × 10⁴	4 × 10 ⁴	(********)
1-8 Hz	10.000	3,2 × 10 ⁴ /f ²	4 × 10 ⁴ /f ²	
8-25 Hz	10.000	4.000/f	5.000/f	
0,025-0,8 kHz	250/f	4/f	5/f	
0,8-3 kHz	250/f	5	6,25	
3-150 kHz	87	5	6,25	
0,15-1 MHz	87	0,73/f	0,92/f	
1-10 MHz	87/f ^{1/2}	0,73/f	0,92/f	
10-400 MHz	28	0,073	0,092	2
400-2.000 MHz	1,375 f ^{1/2}	0,0037 f ^{1/2}	0,0046 f ^{1/2}	f/200
2-300 GHz	61	0,16	0,20	10

Tabla 1. Niveles de referencia para campos eléctricos, magnéticos y electromagnéticos

Niveles de Referencia:

Rango de Frecuencia Campo B 0.025-0.8 kHz 5/f (µT)

 $\frac{5}{f} = \frac{5}{0.05kHz} = 100 \, \alpha T$ (Nivel de Referencia) Por lo tanto,

Para el campo magnético generado a la frecuencia industrial de 50 Hz, el nivel de referencia establecido es 100 µT.

Página 3

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

3. CONDICIONES DE DISEÑO DE LA INSTALACIÓN

La instalación objeto de estudio es una Subestación Eléctrica 400/220 kV de intemperie.

De acuerdo con el Real Decreto 1066/2001 en el que se aconseja tomar medidas que limitan las radiaciones de campo eléctrico y magnético, describimos aquellos criterios a tener en cuenta para minimizar la emisión de campos electromagnéticos y poder así cumplir los límites establecidos en el mismo.

- Los cables subterráneos que poseen una pantalla metálica atenúan el campo eléctrico.
- Además, si son distribuidos en ternas, de tal forma que se compensa el campo magnético que genera cada cable, lo que supone un eficaz método de reducir las emisiones magnéticas.
- Zanjas y atarjeas de cables se diseñan retranqueadas del cerramiento para minimizar las emisiones de campos magnéticos de las mismas.

CONCLUSIONES OBTENIDAS Y MEDIDAS ADOPTADAS

El Real Decreto 1066/2001, de 28 de septiembre, por el que se aprueba el reglamento que establece condiciones de protección del dominio público radioeléctrico, restricciones a las emisiones radioeléctricas y medidas de protección sanitaria frente a emisiones radioeléctricas, establece unos límites de exposición máximos que se deberán de cumplir en las zonas en las que puedan permanecer habitualmente las personas.

En cualquier caso, los circuitos eléctricos objeto de proyecto que generarán valores de campo magnético mayores serán los que circule por ellos una mayor intensidad, siendo éstos los conductores y embarrados de los diferentes niveles de tensión de la subestación.

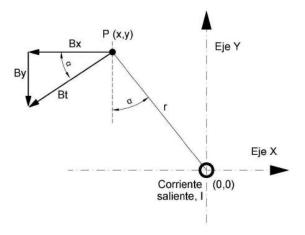
Para calcular el valor eficaz del campo magnético en un punto cuando no existe ningún apantallamiento magnético se puede emplear la ley de Biot-Savart:

$$B = \mu_0 \cdot H = 4 \cdot \pi \cdot 10^{-7} \cdot \frac{I}{2 \cdot \pi \cdot r} (T)$$

Donde:

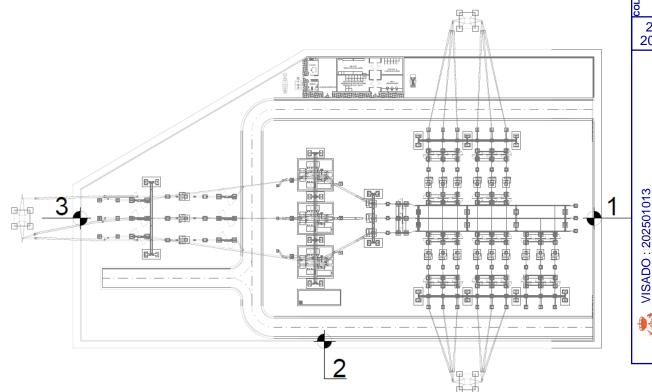
I = Corriente que circula por el conductor, a 50 Hz (A).

r = Distancia del emisor al punto donde se calcula el campo magnético (m).



ANEXO 03: ESTUDIO DE CAMPOS MAGNÉTICOS

novotec


PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 4

Se procede a aplicar esta ley en los siguientes supuestos:

- Punto 1: Punto exterior de la subestación más próximo al embarrado principal de 220 kV.
- Punto 2: Punto exterior de la subestación más próximo al primario de uno de los transformadores.
- Punto 3: Punto exterior de la subestación más próximo a la salida de 400 kV.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 5

CAMPOS MAGNÉTICOS EN EL PUNTO 1

Para el punto 1 se estudia el valor absoluto (criterio más desfavorable) de todos los elementos considerados que crean campo magnético en dicho punto.

Posición	Intensidad (A)	Distancia (m)	Campo Magnético (µT)
Embarrado principal de 220 kV	688,68	6,50	21,19
Primario del transformador 400/220 kV	688,68	131,66	1,05
Salida de 400 kV	378,77	74,47	1,02

CAMPOS MAGNÉTICOS EN EL PUNTO 2

Para el punto 2 se estudia el valor absoluto (criterio más desfavorable) de todos los elementos considerados que crean campo magnético en dicho punto.

Posición	Intensidad (A)	Distancia (m)	Campo Magnético (µT)
Embarrado principal de 220 kV	688,68	39,38	3,50
Primario del transformador 400/220 kV	688,68	21,90	6,29
Salida de 400 kV	378,77	64,01	1,18

CAMPOS MAGNÉTICOS EN EL PUNTO 3

Para el punto 3 se estudia el valor absoluto (criterio más desfavorable) de todos los elementos considerados que crean campo magnético en dicho punto.

Posición	Intensidad (A)	Distancia (m)	Campo Magnético (µT)
Embarrado principal de 220 kV	688,68	92,56	1,49
Primario del transformador 400/220 kV	688,68	67,51	2,04
Salida de 400 kV	378,77	5,40	14,03

Se muestran a continuación los resultados totales obtenidos en los 3 puntos de estudio:

Punto de estudio	Campo Magnético (μΤ)
1	23,25
2	10,97
3	17,56

En todos los casos estudiados, estos valores están muy por debajo de los 100 µT establecidos por el Real Decreto 1066/2001, de 28 de septiembre, como nivel máximo de referencia.

COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADO DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

2025

ANEXO 03: ESTUDIO DE CAMPOS MAGNÉTICOS

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 6

Estos cálculos se han realizado con criterios muy conservadores, por lo que es de esperar que en la realidad sean aún inferiores, teniendo en cuenta que los cables no son infinitos. El efecto de apantallamiento reduce considerablemente el valor del campo magnético.

Por lo tanto, se puede afirmar que la Subestación objeto de proyecto cumple la recomendación europea, y que el público no estará expuesto a campos magnéticos por encima de los recomendados en sitios donde pueda permanecer mucho tiempo.

No obstante, se recomienda realizar las mediciones oportunas una vez ejecutada la reforma, para comprobar que, efectivamente, se cumple lo establecido en el Real Decreto 1066/2001, de 28 de septiembre.

Col. nº 06551 JULIAN GARCIA SANCHEZ

OLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES
DE ASTURIAS Habilitación Profesional 2025

COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADA
DE ASTURIAS Habilitación col. nº 06551 JULIAN GARCIA SANCHEZ Profesional

2/5 2025

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Anexo 04: Relación de Bienes y Derechos Afectados Enero 2025

ANEXO 04: RELACIÓN DE BIENES Y **DERECHOS AFECTADOS**

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE

1. BIENES Y DERECHOS AFECTADOS.....

SOLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADO DE ASTURIAS

Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional

2/5 2025

ANEXO 04: RELACIÓN DE BIENES Y **DERECHOS AFECTADOS**

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 2

1. BIENES Y DERECHOS AFECTADOS

En consecuencia con lo dispuesto en la Ley 24/2013, de 26 de Diciembre, del Sector Eléctrico, y Real Decreto 1955/2000, de 1 de Diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica, se describen en la relación anexa los bienes y derechos afectados por la subestación eléctrica objeto del presente proyecto, con el fin de que sea reconocida la utilidad pública, en concreto, de la citada instalación.

Las afecciones a bienes y derechos, motivadas por la construcción de la Subestación SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV objeto del presente Proyecto, quedan recogidos en la siguiente tabla:

Municipio	Provincia	Ref. Catastral	Polígono	Parcela
Rueda de Jalón Zaragoza 50230A031000070000YW		31	7	

COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADA
DE ASTURIAS Habilitación Col. nº 06551 JULIAN GARCIA SANCHEZ Profesional

2/5 2025

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Documento 02: Presupuesto Enero 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE

1.	MATERIALES	. 2
	CONSTRUCCIÓN	
	GESTIÓN DE RESIDUOS	
	SEGURIDAD Y SALUD LABORAL	
	PRESUPUESTO TOTAL	
٥.	1 1000 00010 10170	. ,

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 2

1. MATERIALES

1. MATERIALES 287.677,16 €					
1.1 Ap	aramenta y Materiales de Alta Tensión				ADO
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE	EL PRINCIPADO
1.1.1	Ud. Interruptor automático unipolar de SF6 245 kV 2000 A 40 kA	3	23.920,00 €	71.760,00 €	EL PR
1.1.2	Ud. Seccionador tripolar de 245 kV 2000 A con cuchillas de PaT	1	15.465,00 €	15.465,00 €	LES D
1.1.3	Ud. Seccionador tripolar de 245 kV 2000 A	1	13.968,00 €	13.968,00 €	STRIA
1.1.4	Ud. Transformador de tensión inductivo relación 220/ $\sqrt{3}$: 0,110/ $\sqrt{3}$ - 0,110./ $\sqrt{3}$ - 0,110/ $\sqrt{3}$ + 0,110/ $\sqrt{3}$	3	11.835,00 €	35.505,00 €	SINDUS
1.1.5	Ud. Transformador de intensidad 245 kV relación 150-300/5-5-5-5 A	3	10.245,00 €	30.735,00 €	NICO
1.1.6	Ud. Pararrayos de protección 245 kV	3	2.050,00 €	6.150,00 €	S TÉC DE AS
1.1.7	ml. Cable aluminio con alma de acero tipo GULL	38	8,49 €	322,62 €	NIERO
1.1.8	ml. Tubo aluminio 150/134 mm Ø	40,5	38,00 €	1.539,00 €	INGE
1.1.9	Ud. Aislador soporte de tipo columna para exterior C10-1050	4	810,00€	3.240,00 €	AL DE
1.1.10	Ud. Sumninistro de Piezas de Conexión y derivación	47	13,82 €	649,54 €	OFICI
Total S	ubcapítulo 1.1			179.334,16 €	EGIO
					CO

1. MA	1. MATERIALES 287.677,16 €					
1.2 Pro	1.2 Protecciones, Control y Comunicaciones					
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE		
1.2.1	Ud. Suministro de Armario de Protección y Control de Posición de Línea 220 kV (UCP)	1	28.750,00 €	28.750,00 €		
1.2.2	ml. Suministro de Cable de Control y Fuerza 0,6/1 kV de diversas composiciones	100	2,90 €	290,00 €		
1.2.3	ml. Suministro de latiguillos Cable de FO de diversas composiciones	10	3,10€	31,00 €		
Total S	Total Subcapítulo 1.2 29.071,00 €					

Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional

2/5 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 3

1. MAI	IALES 287.677,16 €			
1.3 Est	ructura Metálica			
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE
1.3.1	Ud. Suministro de Columna Pórtico de Línea 220 kV	2	10.800,00€	21.600,00 €
1.3.2	Ud. Suministro de Viga Pórtico de Línea 220 kV	1	6.300,00 €	21.600,00 € 6.300,00 €
1.3.3	Ud. Suministro Soporte Interruptor 220 kV	3	5.400,00 €	16.200,00 €
1.3.4	Ud. Suministro Soporte Seccionador 220 kV sin PaT	1	3.250,00 €	3.250,00 €
1.3.5	Ud. Suministro Soporte Seccionador 220 kV con PaT	1	3.250,00 €	3.250,00 €
1.3.6	Ud. Suministro Soporte Transformador de Tensión 220 kV	3	1.450,00 €	4.350,00 €
1.3.7	Ud. Suministro Soporte Transformador de Intensidad 220 kV	3	1.450,00 €	4.350,00 €
1.3.8	Ud. Suministro Soporte Autoválvula Unipolar de 220 kV	3	1.450,00 €	4.350,00 €
1.3.9	Ud. Suministro Soporte Aislador C10-1050	1	1.200,00 €	1.200,00€
1.3.10	Ud. Suministro Soporte Barras 220 kV	1	1.350,00 €	1.350,00 €
Total S	ubcapítulo 1.3			66.200,00€
				i
				66.200,00 €

1. MA	1. MATERIALES 287.677,16 €					
1.4 Re	1.4 Red de Tierras					
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE		
1.4.1	ml. Suministro de Conductor Cu de 120 mm2	868	12,75€	11.067,00 €		
1.4.2	Ud. Suministro de Piezas de Conexión de Puesta a Tierra	50	15,50 €	775,00 €		
1.4.3	Ud. Soldadura Cadweld	82	15,00 €	1.230,00 €		
Total S	otal Subcapítulo 1.4 13.072,00 €					

Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional

2/5 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 4

2. CONSTRUCCIÓN

2. COI	NSTRUCCIÓN			129.919,91 €
2.1 Mc	ovimiento de Tierras			
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE
2.1.1	m2. Limpieza y desbroce del terreno por medios mecánicos	1767,43	0,57 €	1.007,44 €
2.1.2	m3. Retirada de tierra vegetal (desmonte)	303,38	3,90 €	1.183,18 €
2.1.3	m3. Suministro de material y ejecución de relleno y compactación (terraplenado) con material procedente de la excavación o de préstamo	1529,18	2,00 €	3.058,36 €
2.1.4	m3. Suministro de materiales y ejecución de capa de base en viales	109,83	16,36€	1.796,82 €
2.1.5	m3. Suministro de materiales y ejecución de capa de rodadura en viales	36,61	28,33 €	1.037,16 €
2.1.6	m3. Acabado superficial de grava de 10 cm de espesor y granulometría 20/40, extendida en el parque de intemperie	111,80	5,25 €	586,95 €
Total S	iubcapítulo 2.1			8.669,91 €

2. CO	NSTRUCCIÓN			129.919,91 €
2.2 Ol	ora Civil de Parque			
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE
2.2.1	ml. Construcción canalizaciones de cables, incluida excavación, tapas y drenaje	73,00	95,00 €	6.935,00 €
2.2.2	Ud. Instalación del Sistema de drenaje completo de la subestación, incluyendo canales, tuberías de drenaje, arquetas y colectores.	1,00	1.500,00 €	1.500,00 €
2.2.3	m3. Ejecución de la cimentación de la aparamenta, incluyendo excavación y hormigonado	47,45	50,00 €	2.372,50 €
2.2.4	m3. Ejecución de la cimentación de los pórticos, incluyendo excavación y hormigonado	20,65	50,00€	1.032,50 €
2.2.5	ml. Suministro e instalación de Cerramiento Perimetral a 2,2 m de altura, incluyendo cimentación, postes metálicos, malla y accesorios	95,00	10,00€	950,00 €
2.2.6	ml. Ejecución de vial interior y bordillos perimetrales, de 5 m de ancho	23,00	180,00€	4.140,00 €
2.2.7	ml. Ejecución de vial de acceso a la subestación, de 5 m de ancho	124,00	180,00€	22.320,00 €
Total S	Subcapítulo 2.2			39.250,00 €

Habilitación Col. nº 06551 JULIAN GARCIA SANCHEZ Profesional

2/5 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 5

2. CONSTRUCCIÓN 129.919,91 €					
2.3 M	2.3 Montaje Electromecánico				
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE	
2.3.1	Ud. Montaje de todos los equipos de la instalación, incluyendo conexiones, tendido de cables de control y potencia y conexión a la Red General de Tierras	1,00	47.000,00 €	47.000,00 €	
Total S	Total Subcapítulo 2.3 47.000,00 €				

2.3.1	Ud. Montaje de todos los equipos de la instalación, incluyendo conexiones, tendido de cables de control y potencia y conexión a la Red General de Tierras	1,00	47.000,00 €	47.000,00 € 47.000,00 €
Total :	Subcapítulo 2.3			47.000,00 €
2. CO	NSTRUCCIÓN			129.919,91 €
2.4 Pr	uebas y Puesta en Servicio			
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE
2.4.1	Ud. Medición de tensiones de paso y contacto y resistencia de puesta a tierra, Verificación medidas fibra óptica y Pruebas y puesta en servicio incluso asistencia en pruebas conjuntas con terceros (compañía eléctrica, fabricantes, etc.).	1,00	21.500,00 €	21.500,00 €
Total :	Subcapítulo 2.4			21.500,00 €
				21.500,00 €

2. CO	NSTRUCCIÓN			129.919,91 €	S.	Τ α
	rvicios Diversos				2	2/5 025
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE		
2.5.1	Ud. Servicios Auxiliares de Obra	1,00	2.000,00 €	2.000,00 €		
2.5.2	Ud. Supervisión de Construcción	1,00	2.000,00 €	2.000,00 €		AJY]
2.5.3	Ud. Almacenamiento y Transporte	1,00	6.000,00€	6.000,00 €		MYM
2.5.4	Ud. Seguridad y Vigilancia	1,00	3.500,00 €	3.500,00 €		3YAP)
Total S	Subcapítulo 2.5			13.500,00 €	_	FVXZ

Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 6

3. GESTIÓN DE RESIDUOS

3. GEST	TIÓN DE RESIDUOS			951,62€
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE
3	Ud. Gestión de Residuos	1	951,62€	951,62€
Total S	ubcapítulo 3			951,62€

4. SEGURIDAD Y SALUD LABORAL

3	Ud. Gestión de Residuos	1	951,62€	951,62€	INCI
Total S	ubcapítulo 3			951,62€	EL PR
I. SE	GURIDAD Y SALUD LABORAL				ICOS INDUSTRIALES D
4. SEG	URIDAD Y SALUD LABORAL			9.151,30 €	COS
REF	DESCRIPCIÓN	MEDICIÓN	PRECIO	IMPORTE	PECN AST
4	Seguridad y Salud	1	9.151,30 €	9.151,30 €	EROS 1
Total S	ubcapítulo 4			9.151,30 €	INGENI
					핌
					COLEGIO OFICIAL
					000

Col. nº 06551 JULIAN GARCIA SANCHEZ Habilitación Profesional

2/5 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 7

5. PRESUPUESTO TOTAL

RESUMEN DEL PRESUPUESTO	
1. MATERIALES	287.677,16€
1.1 Aparamenta y Materiales de Alta Tensión	179.334,16€
1.2 Protecciones, Control y Comunicaciones	29.071,00 €
1.3 Estructura Metálica	66.200,00 €
1.4 Red de Tierras	13.072,00 €
2. CONSTRUCCIÓN	129.919,91 €
2.1 Movimiento de Tierras	8.669,91 €
2.2 Obra Civil de Parque	39.250,00 €
2.3 Montaje Electromecánico	47.000,00 €
2.4 Pruebas y Puesta en Servicio	21.500,00 €
2.5 Servicios Diversos	13.500,00 €
3. GESTIÓN DE RESIDUOS	951,62€
4. SEGURIDAD Y SALUD LABORAL	9.151,30€
TOTAL DE EJECUCIÓN MATERIAL	427.699,99 €
Gastos Generales -> 13%	55.601,00€
Beneficio Industrial -> 6%	25.662,00 €
I.V.A> 21%	106.882,23 €
TOTAL PRESUPUESTO:	615.845,21 €

Col. nº 06551 JULIAN GARCIA SANCHEZ

COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADA
DE ASTURIAS Habilitación Col. nº 06551 JULIAN GARCIA SANCHEZ Profesional

2/5 2025

Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY]

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Documento 03: Planos Enero 2025

DOCUMENTO 03: PLANOS

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

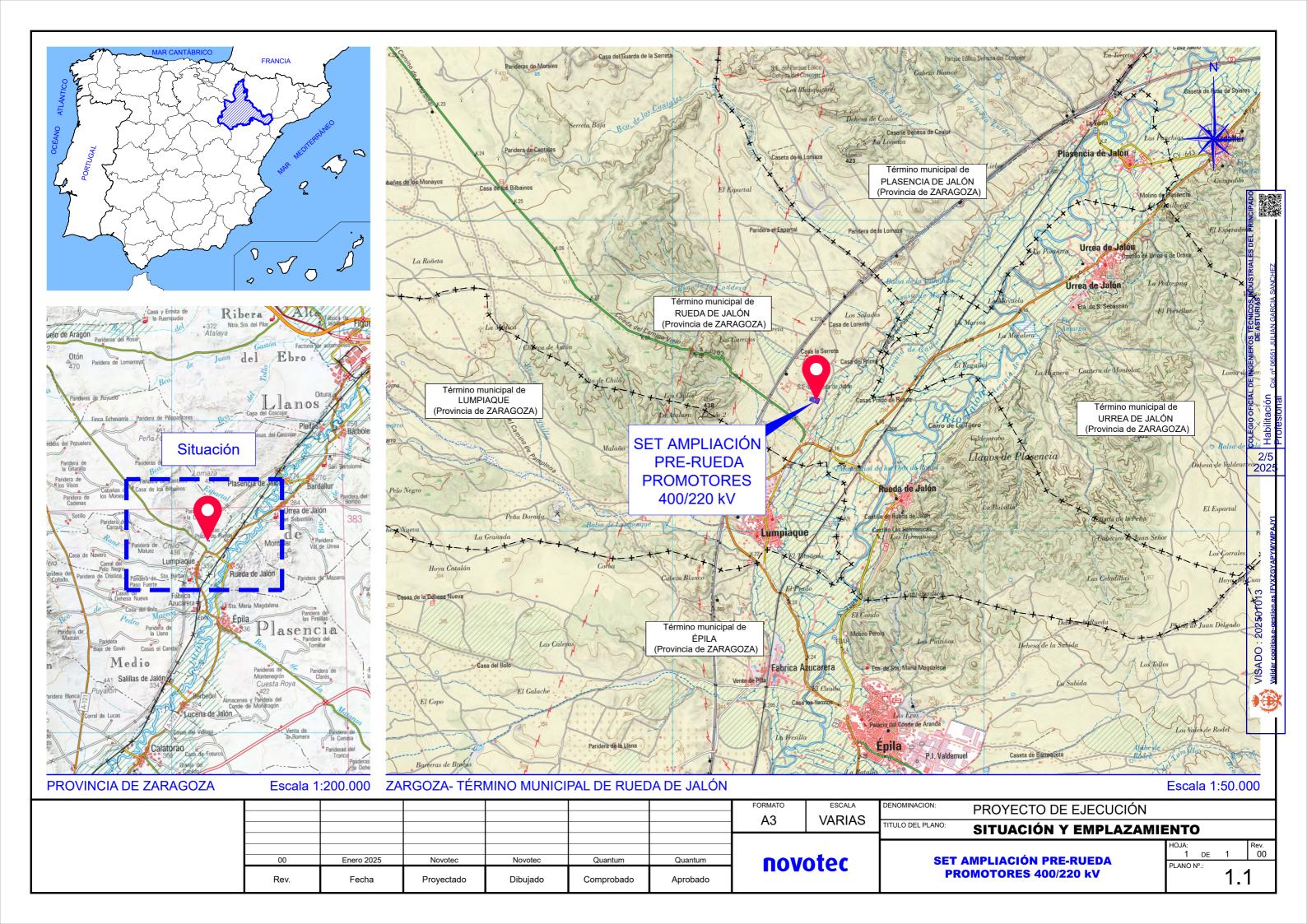
Página 1

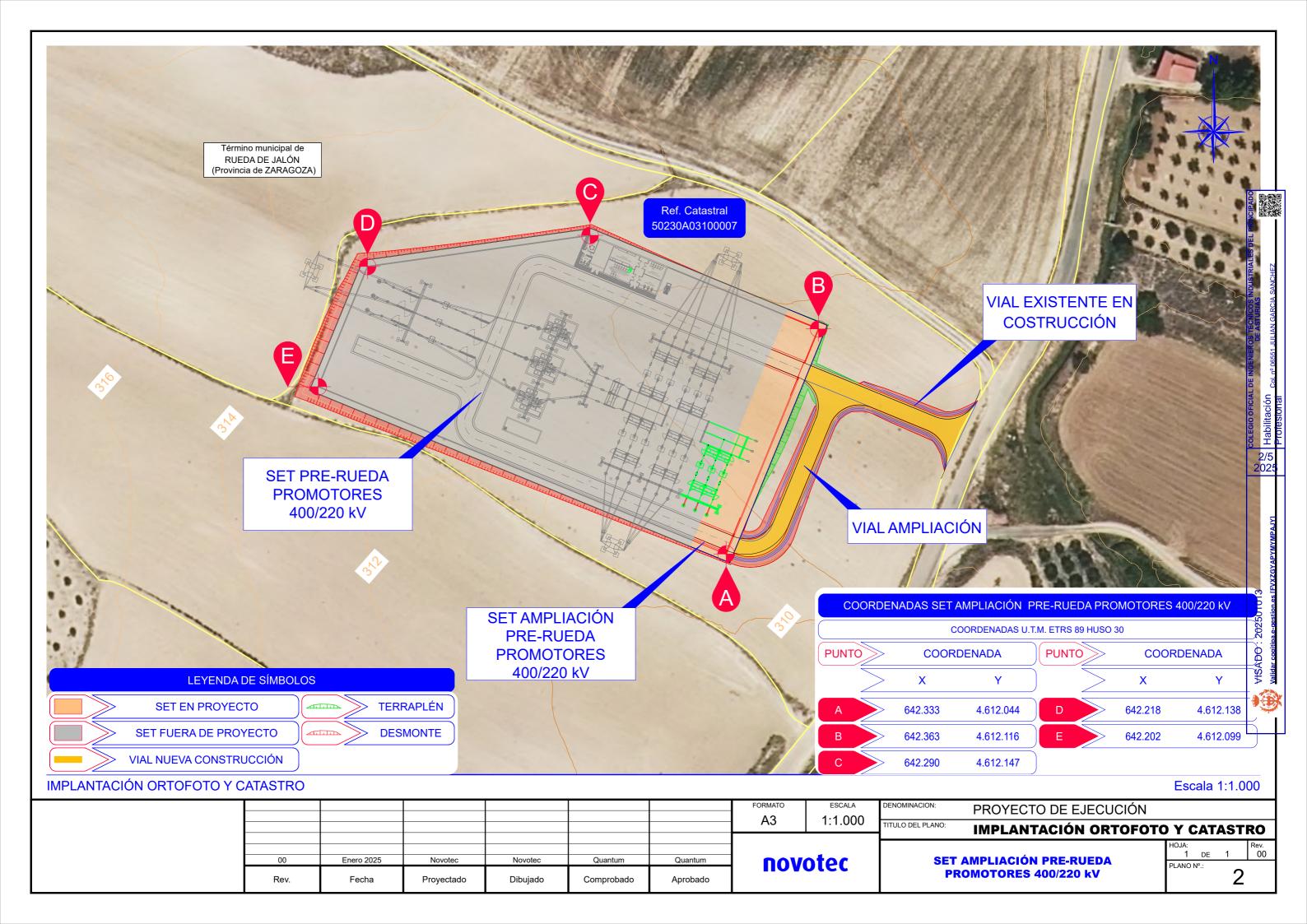
ÍNDICE

Generales

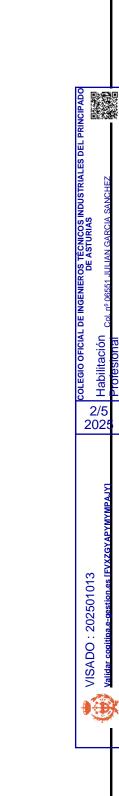
- 1. Situación y Emplazamiento
- Implantación ortofoto y catastro
- 3. Explanación y Acceso

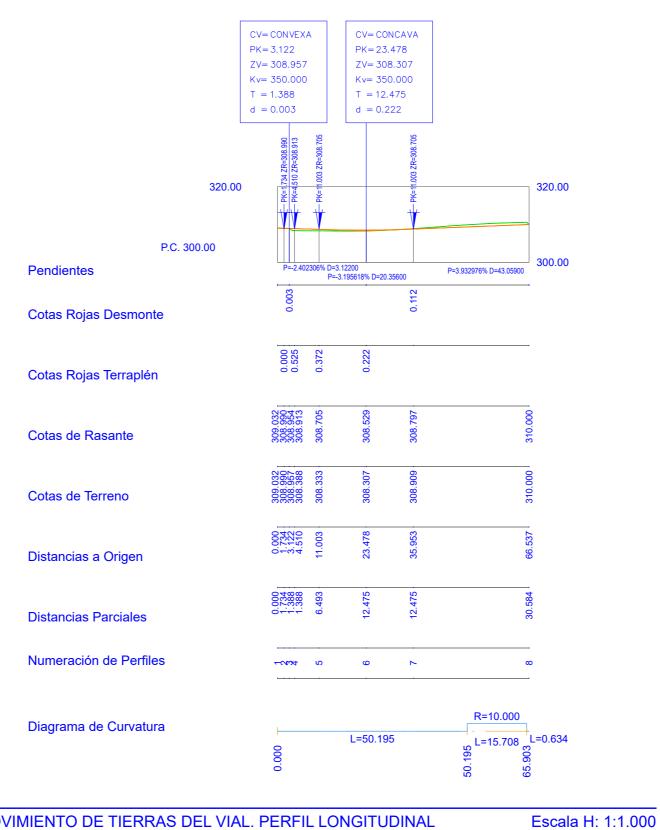
Subestación Eléctrica

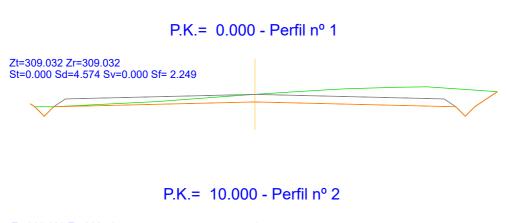

- 4. Planta General Electromecánica
- 5. Alzado Electromecánico
- 6. Planta Obra Civil
- 7. Red General de Tierras


Protección y Control

- 8. Esquema Unifilar Subestación General
- Esquema Unifilar de Protecciones Ampliación


Esquema General de Evacuación


10. Esquema General de Evacuación



MOVIMIENTO DE TIERRAS DEL VIAL. PERFIL LONGITUDINAL

V: 1:1.000

							FORMATO A3	\/ARIAS	DENOMINACION: TITULO DEL PLANO:	PROYECTO DE EJECUCIÓN EXPLNACIÓN Y ACCESO MOVIMIENTO DE TIERRAS DEL VIAL. PE	EREU LONGITU	IDINAL
	00	Enero 2025	Novotec	Novotec	Quantum	Quantum	DOV	otor	SET	AMPLIACIÓN PRE-RUEDA	HOJA: 2 DE 4	Rev. 00
	Rev.	Fecha	Proyectado	Dibujado	Comprobado	Aprobado	novotec		PF	ROMOTORES 400/220 kV	PLANO Nº.:	3

P.K.= 20.000 - Perfil nº 3

						Г
						1
						L
						Г
						ı
00	Enero 2025	Novotec	Novotec	Quantum	Quantum	
Rev.	Fecha	Proyectado	Dibujado	Comprobado	Aprobado	

FORMATO ESCALA S/E

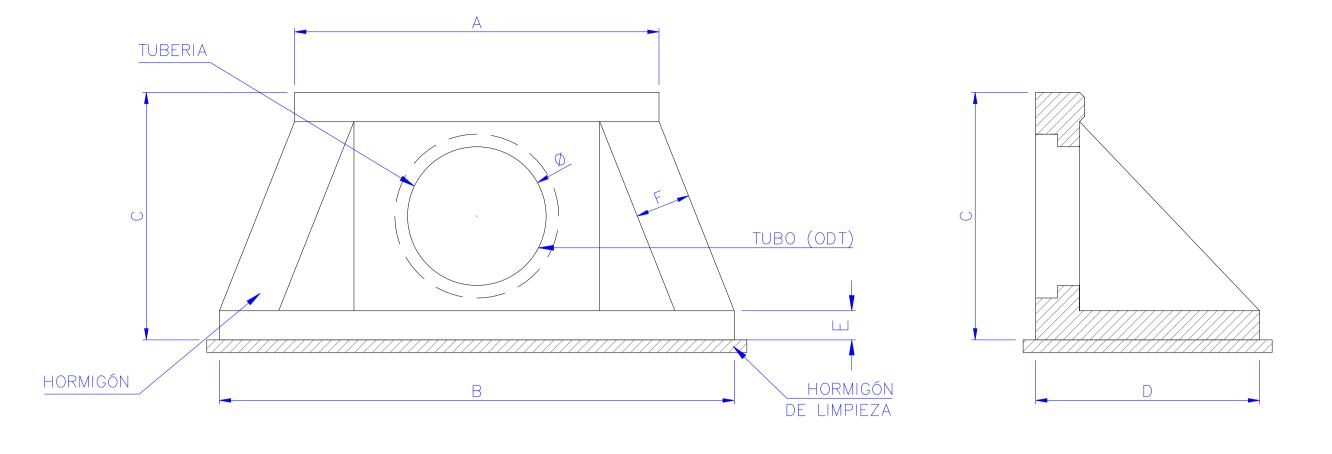
S/E TITULO DEL

DENOMINACION: PROYECTO DE EJECUCIÓN
TITULO DEL PLANO: EXPLNACIÓN Y ACCESO
MOVIMIENTO DE TIERRAS DEL VIAL. PEI

HOJ

RF	ILES T	RAN	SVER	SALES
	HOJA:			Rev.
	3	DE	4	00
	PLANO N	Nº.:	3	8

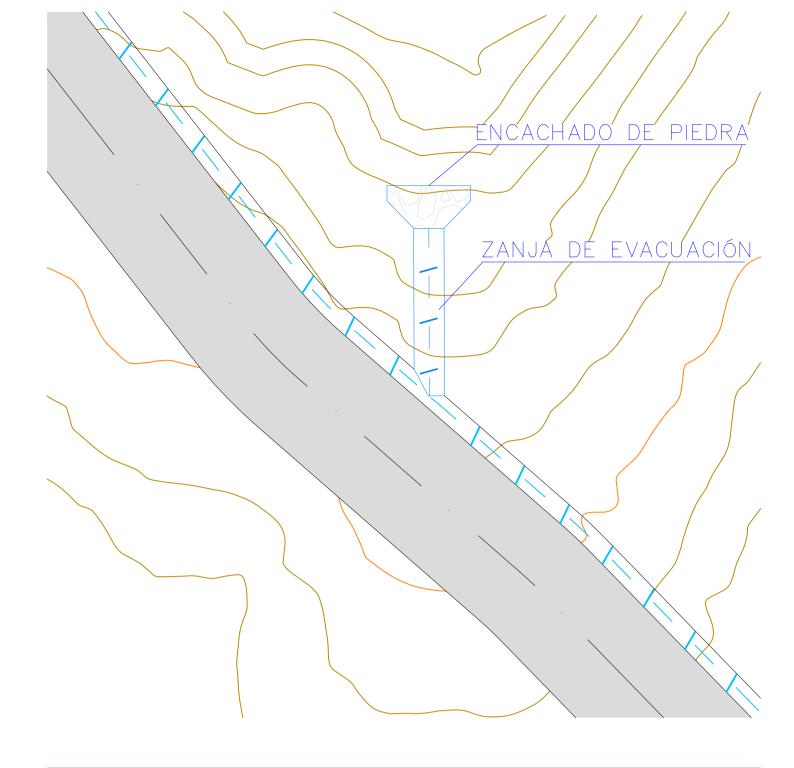
_


NOVOTECSET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Dimensiones en mm

S/E

S/E


EMBOCADURA Y ALETAS

ALZADO

HORMIGÓN

HORMIGÓN

DETALLE PLANTA ZANJA DE EVACUACIÓN. VERTIDO

S/E

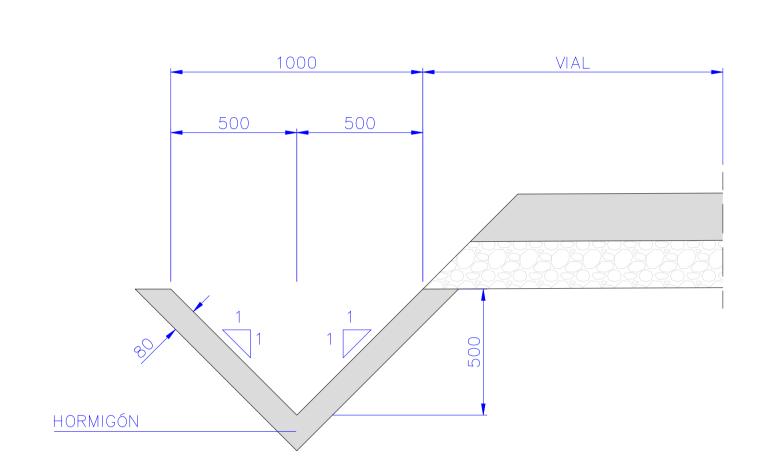
ARMADO LOSA: Ø12 c/30 cm

			EMBOO	CADURAS				
ODT	MATERIAL	Ø	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)
ODT TIPO 1	HORMIGÓN	600	1180	1900	1000	750	110	100
MUROS Y ALE			ZONTAL Ø1 ICAL Ø12 c/					

	CIFICACIONES PARA ACERO N EMBOCADURAS, ALETAS		١			
ELEMENTOS	ESPECIFICACIÓN DEL ELEMENTO	CONTROL	COEFICIENTE PONDERACIÓN			
			γο	$\gamma_{ m g}$	$\gamma_{\rm f}$	
HORMIGÓN ESTRUCTURAL	H25	Normal	1.5			
HORMIGÓN DE LIMPIEZA Y CUNETAS HORMIGÓNADAS	H15	Normal	1.5			
ACERO	B500S (embocaduras y aletas)	Normal		1.5		

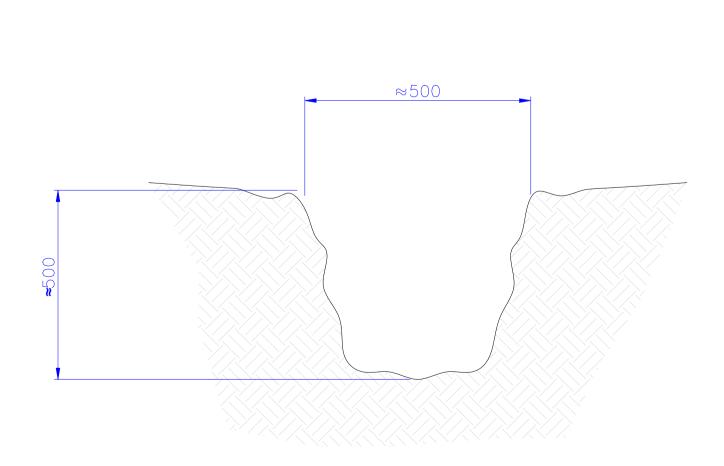
Notas:

S/E

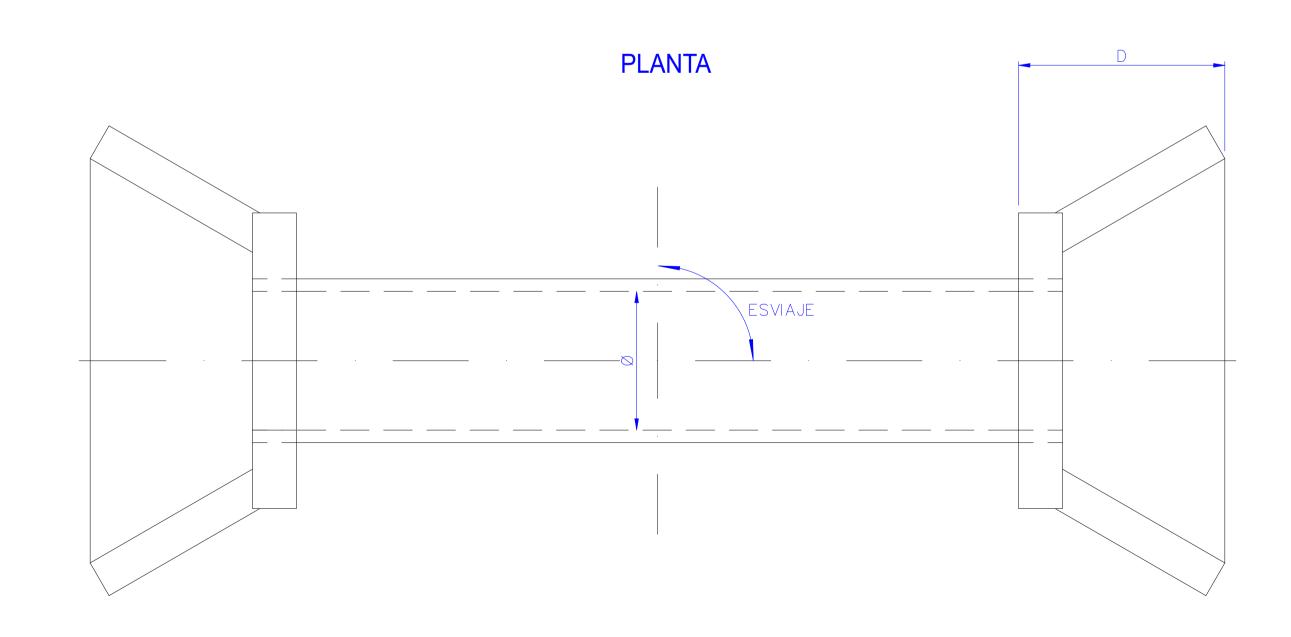

S/E

CAMA DE ARENA DE 20 cm

1.- En el momento del replanteo de cada ODT, se valorará puntualmente la colocación de arquetas tipo caja a la entrada de los tubos.

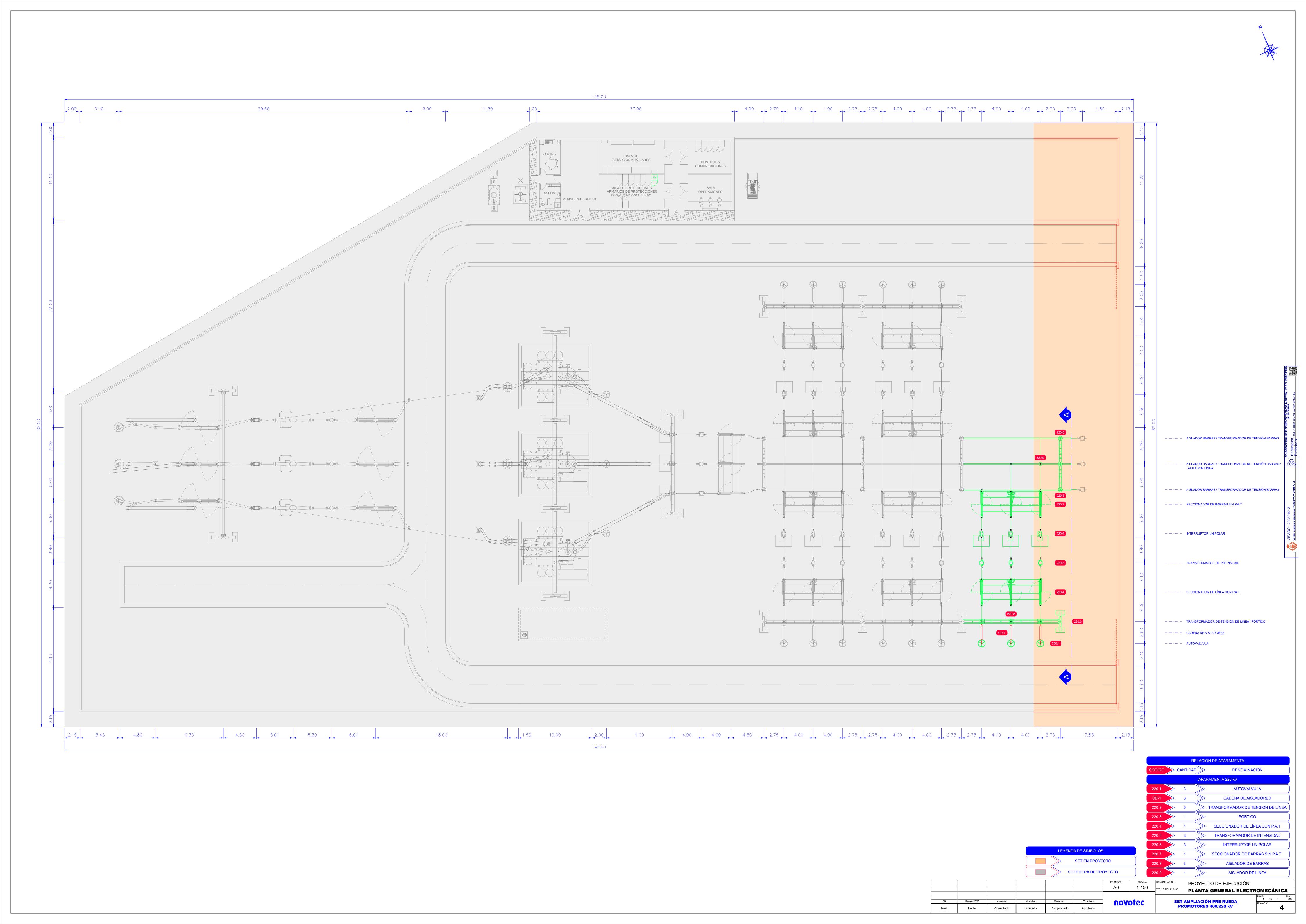

- El recubrimiento mínimo será de 50 mm.

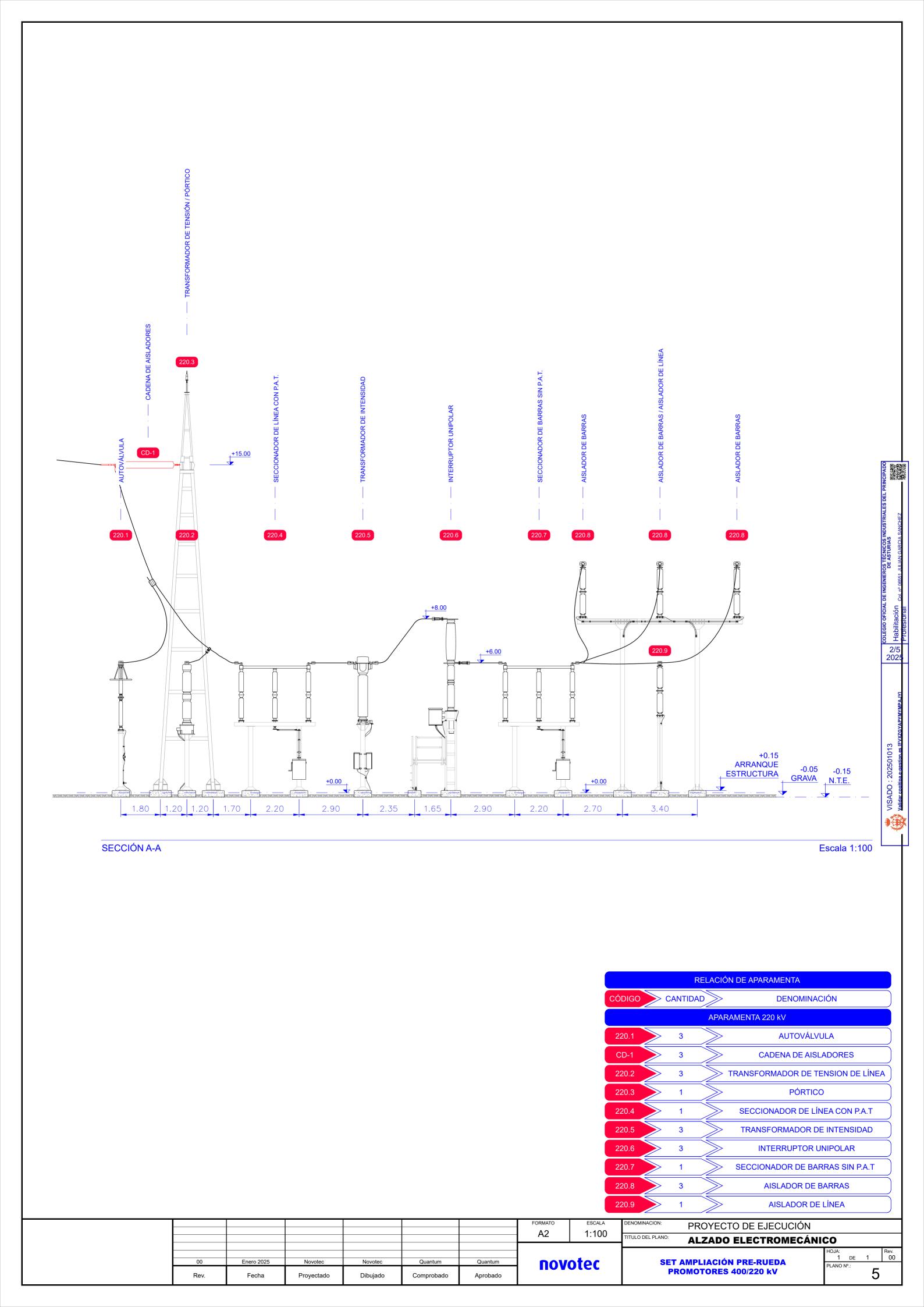
- 2.- Se deberán localizar las tuberías de abastecimiento existentes en campo, adaptando convenientemente las
- 3.- Las juntas de contracción se ejecutarán, con carácter general, a una distancia de 3 metros, su espesor será de 3 mm y serán juntas sin sellado.
- 4.- En el replanteo de cada OTD, se tendrá en cuenta la necesidadad de apertura de zanjas de evacuación en función de su ubicación definitiva y la sección transversal en cada caso. preferiblemente se situará la otd en puntos tales que no se requiera la apertura de zanjas de evacuación, consultando en cualquier caso a la propiedad la posibilidad de apertura de dichas zanjas en relación a la disponibilidad de los terrenos necesarios.
- 5.- Cuando se requiera la ejecución de encachados, éstos estarán formados por piedra natural, sana, compacta y resistente, con la doble finalidad de disipar la energía y de evitar la erosión de la zona. Irán dispuestos a la salida de las zanjas de evacuación.

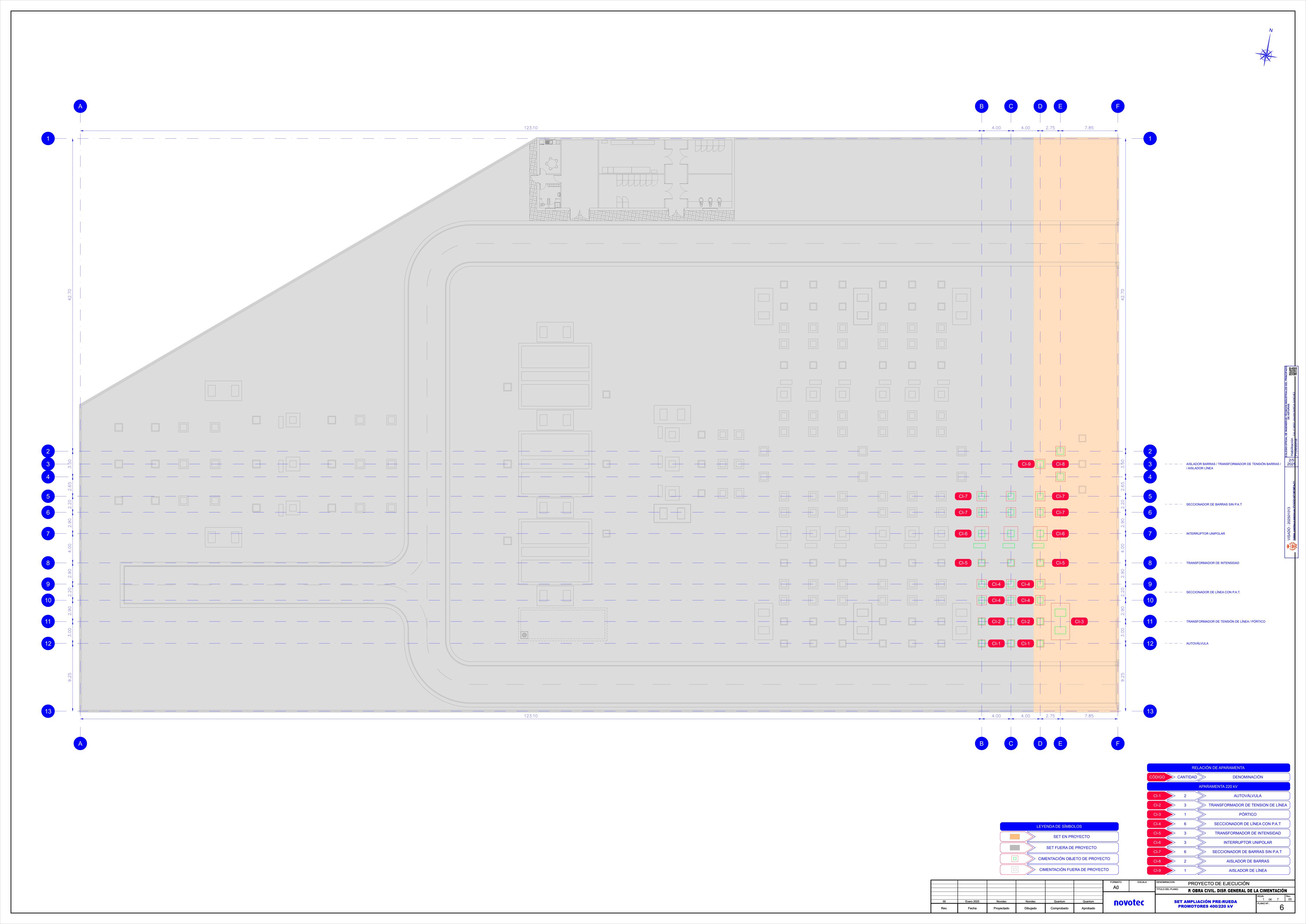


CUNETA DE TIERRA

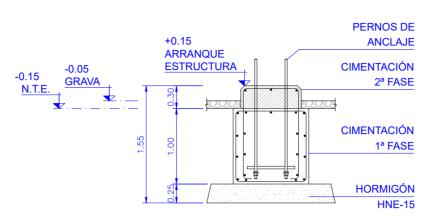
Dimensiones en mm **CUNETA REVESTIDA** S/E

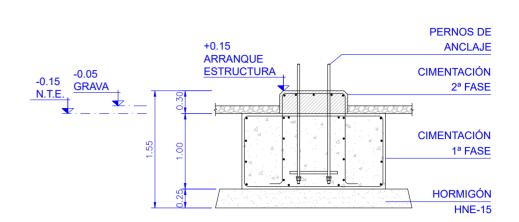

Dimensiones en mm SECCIÓN ZANJA DE EVACUACIÓN

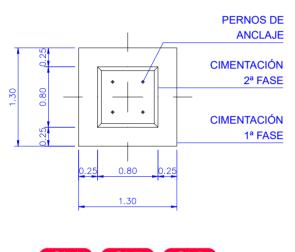


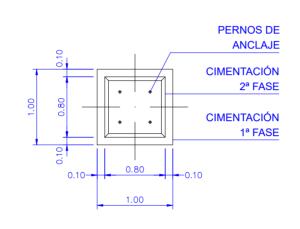

OBRAS DE DRENAJE TRANSVERSAL (ODT) EMBOCADURA - EMBOCADURA

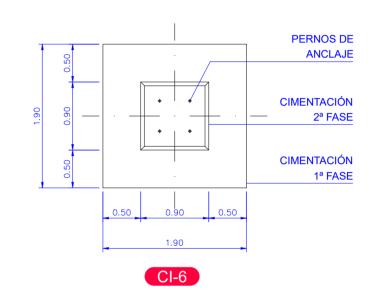
PROYECTO DE EJECUCIÓN EXPLNACIÓN Y ACCESO DETALLES DE DRENAJES A1 4 DE 4 00 novotec

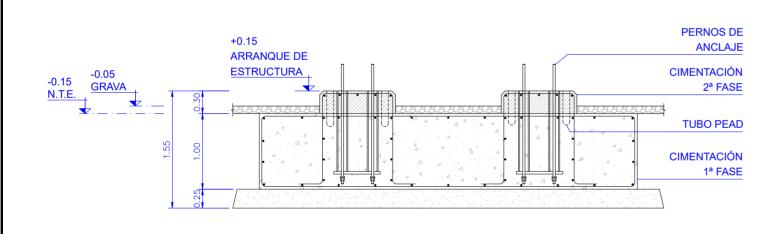

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

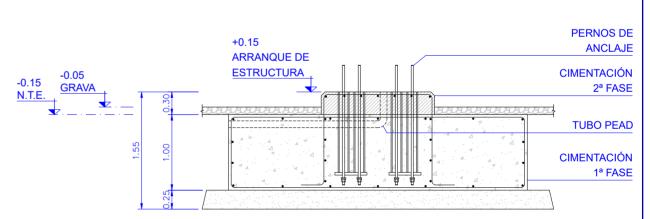


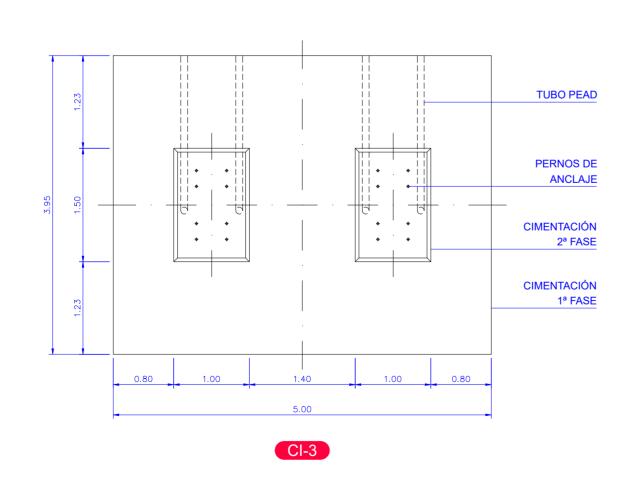





-0.05 GRAVA







DETALLE TIPO CIMENTACIÓN PÓRTICOS

- LA GENERATRIZ DE LOS TUBOS EN LOS GIROS TENDRÁ UN RADIO DE GIRO AMPLIO QUE FACILITE EL PASO DE CABLES NUNCA GENERANDO CODOS A 90°.
- EN CASO DE SALIR EL/LOS TUBOS DE LA GEOMETRÍA DE LA ZAPATA O PEANA SE EJECUTARÁ UN DADO DE HORMIGÓN ALREDEDOR DEL TUBO VISTO CON UN RECUBRIMIENTO MÍNIMO DE EJE
- PREVIAMENTE A LA SEGUNDA FASE DE HORMIGÓN, SE REALIZARÁ EL LLENADO DE LAS CAMISAS DE LOS PERNOS MEDIANTE LA UTILIZACIÓN DE UN HORMIGÓN SIN RETRACCIÓN TIPO MASTERFLOW 952 0 SIMILAR.
- LA VARILLA DE ACERO CORRUGADO Ø12 PARA LA P.a.T. IRÁ CONECTADA A LA RED DE TIERRAS MEDIANTE SOLDADURA ALUMINOTÉRMICA.

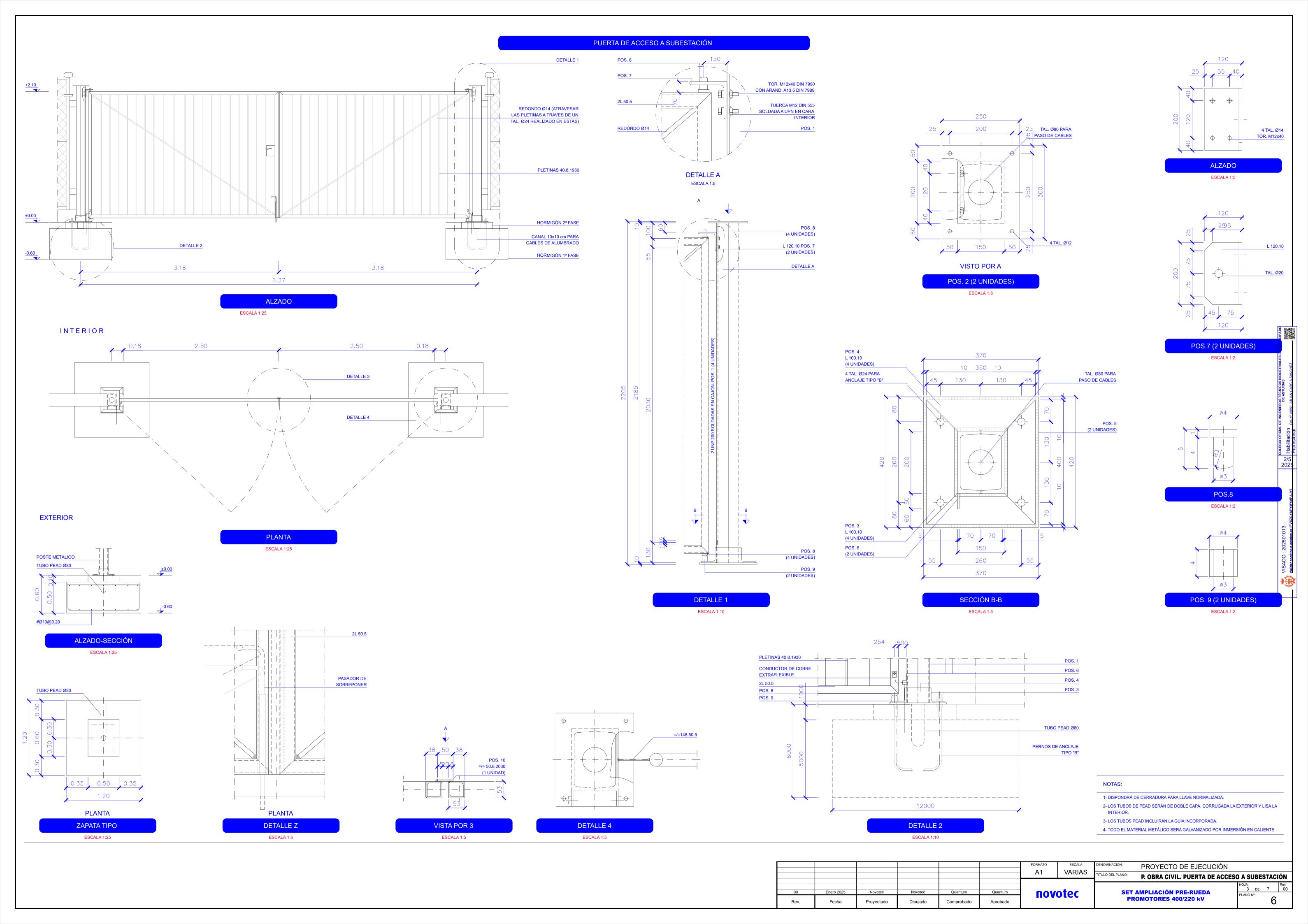
						Г
						1
						L
						Γ
						l
00	Enero 2025	Novotec	Novotec	Quantum	Quantum]
Rev.	Fecha	Proyectado	Dibujado	Comprobado	Aprobado	

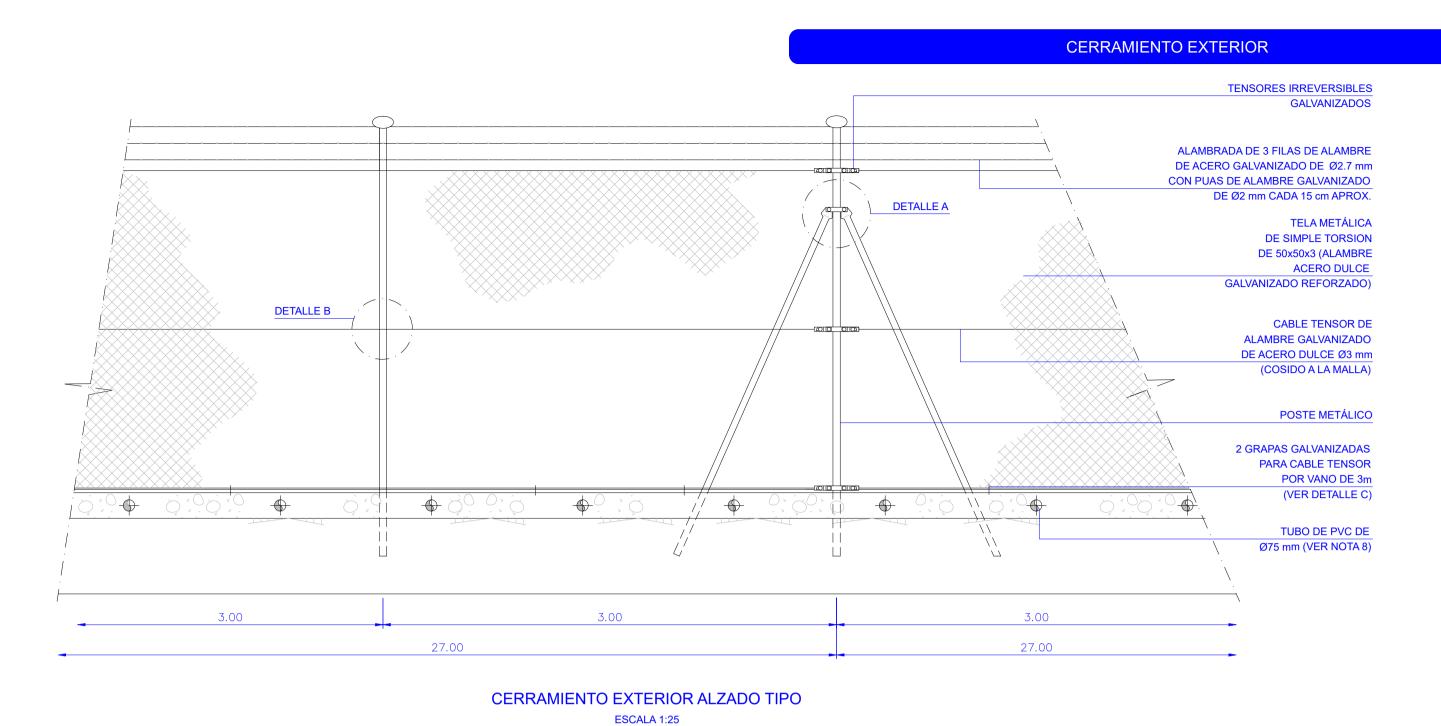
FORMATO

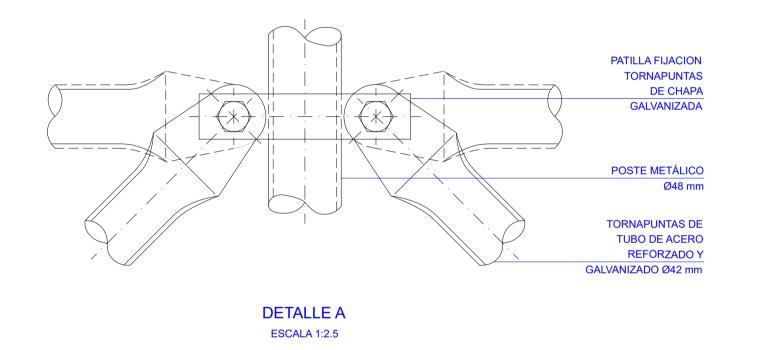
A2

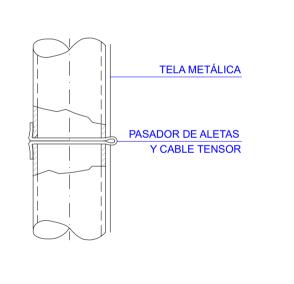
novotec

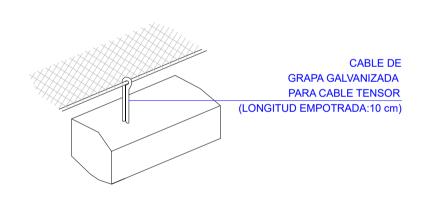
DENOMINACION: PROYECTO DE EJECUCIÓN

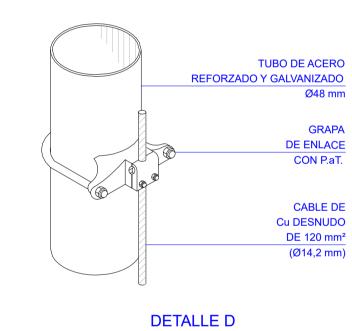

TITULO DEL PLANO: PLANTA OBRA CIVIL. DETALLES DE CIMENTACIÓN

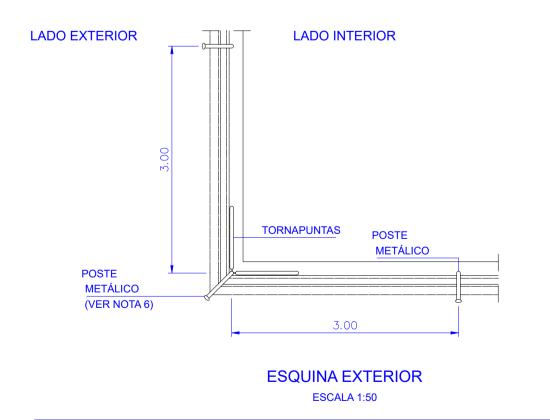

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

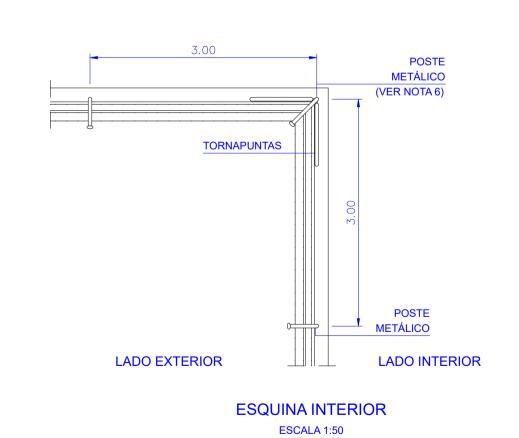

VISADO: 202501013
Validar cogitipa e-gestion es IFVXZGYAPYMYMPAJYI


2/5 2025

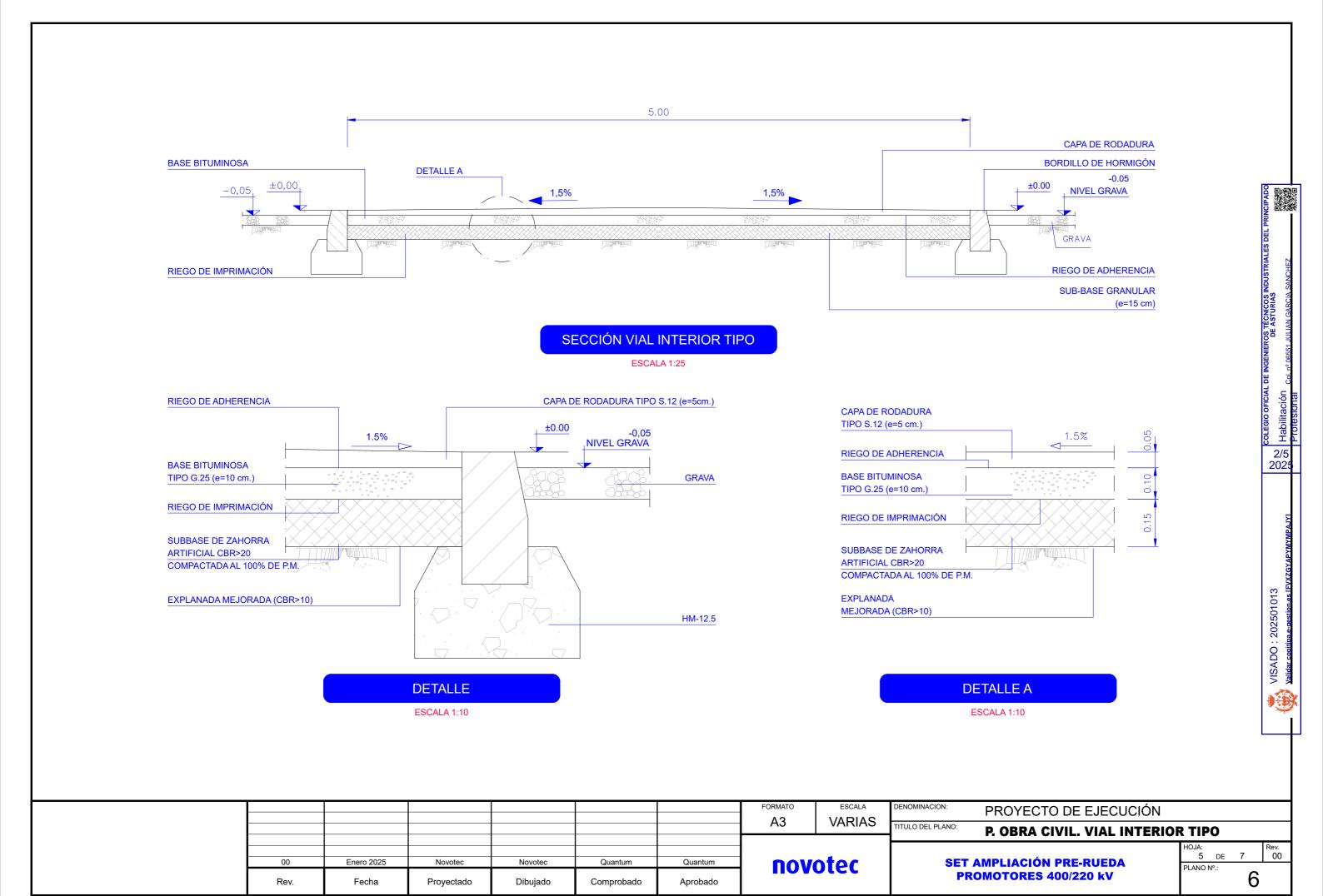


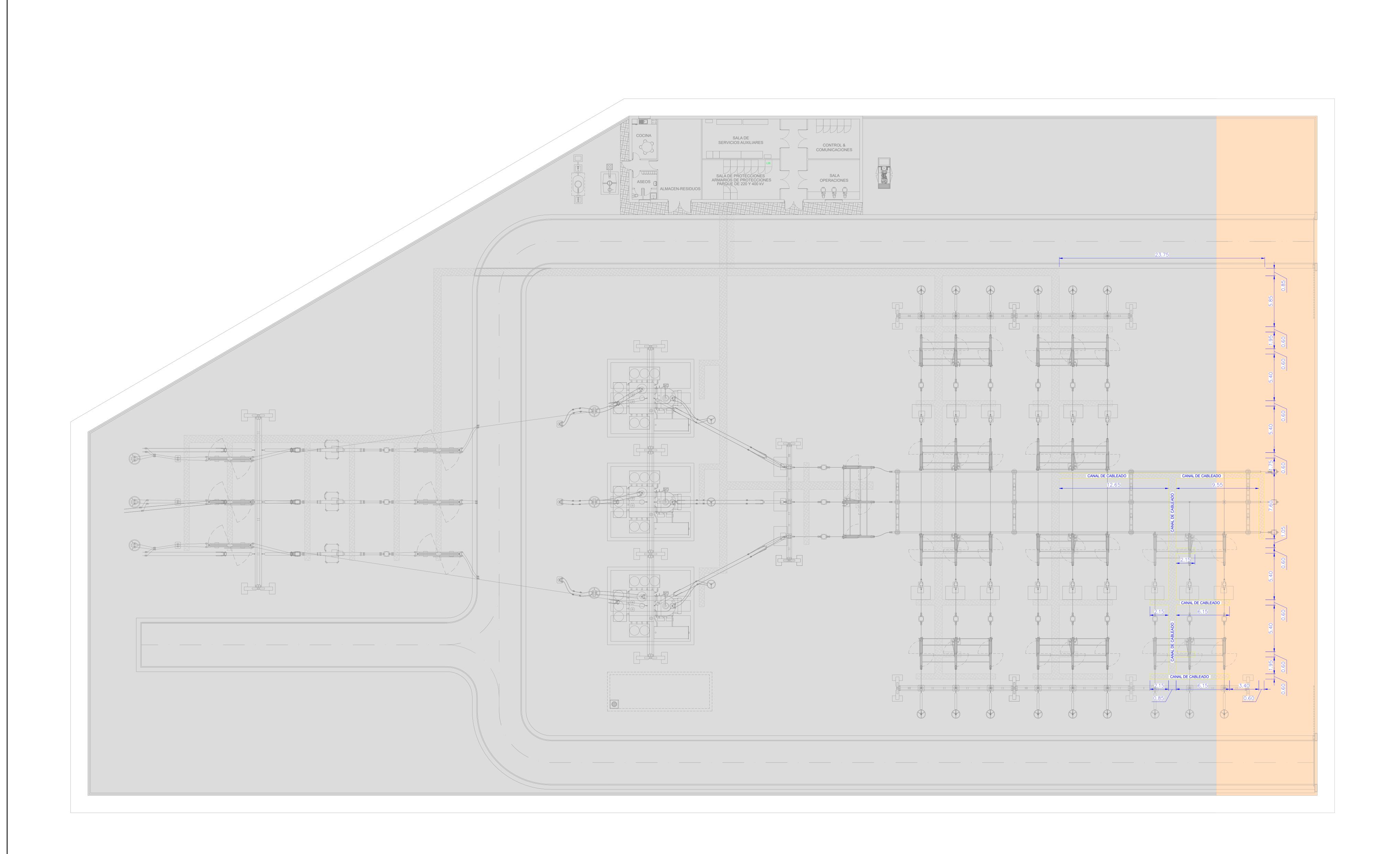






ESCALA 1:2

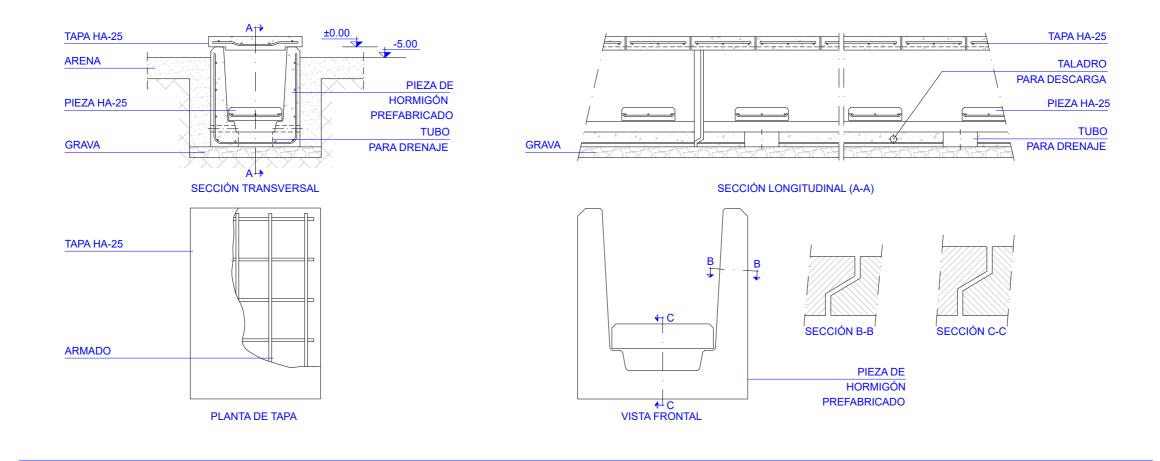

NOTAS


- 1- COTAS Y ELEVACIONES EN METROS, EXCEPTO LAS INDICADAS.
- 2- EN LOS TRAMOS LARGOS, CADA 27.00 METROS SE MONTARÁN TORNAPUNTAS DE ANCLAJE ADEMAS DE TODAS LAS ESQUINAS O CAMBIO DE DIRECCIÓN.

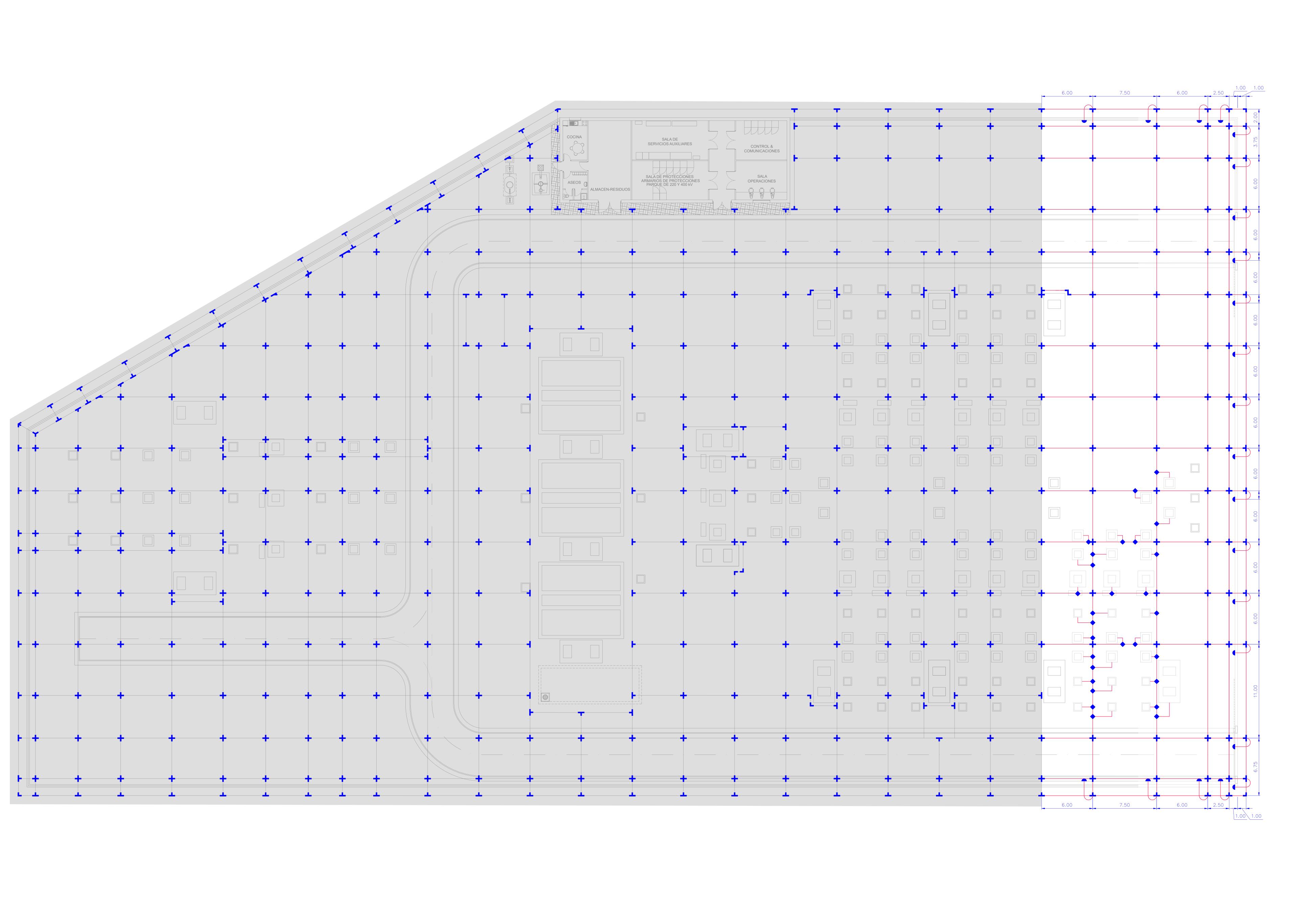

3- LA JUNTA DE HOMIGONADO DEL MURETE SE REALIZARÁ ENTRE DOS POSTES,

- EVITANDO QUE COINCIDA CON LOS TORNAPUNTAS.
- 4- CUANDO LA ALTURA DEL MURETE DE HORMIGÓN SOBRE EL N.T.E. SEA SUPERIOR A
- 50 cm, SE DEBERÁ ARMAR CON UNA #Ø6/150x150mm. POR AMBAS CARAS (B-400 S). 5- PARA SITUACIÓN DE LOS PUNTOS DE PUESTA A TIERRA VER PLANO DE PLANTA
- GENERAL DE LA RED DE PUESTA A TIERRA.
- 6- EN LOS POSTES DE ESQUINA EL BRAZO PARA LA ALAMBRADA DE ESPINO SERÁ MÁS LARGO QUE EN LOS POSTES INTERMEDIOS. VER DETALLE DE ESQUINAS.
- 7- TODO EL MATERIAL SERÁ GALVANIZADO.
- 8- EN EL MURETE DEL CERRAMIENTO EN LAS ZONAS DE RELLENO, SE DISPONDRÁN DESAGÜES FORMADOS POR TUBOS DE PVC Ø75 mm CADA METRO, DE FORMA QUE EL NIVEL INFERIOR DE DICHOS TUBOS COINCIDA CON EL NIVEL SUPERIOR DE LA CAPA DE GRAVA.
- 9- ACERO DE LOS POSTES: S275JR.

						FORMATO A1	ESCALA VARIAS	DENOMINACION:	PROYECTO DE EJECUCIÓN					
						711	V/ 11 (1)/ (C	TITULO DEL PLANO:	P. OBRA CIVIL. DETALLE CERRAI		EXTER	≀IOR		
00	Enero 2025	Novotec	Novotec	Quantum	Quantum		Dovotos		novotec		AMPLIACIÓN PRE-RUEDA	HOJA: 4 [)E 7	Rev. 00
Rev.	Fecha	Proyectado	Dibujado	Comprobado	Aprobado	nov	otec		ROMOTORES 400/220 kV	PLANO Nº.:	6	;		



						FORMATO		DENOMINACION: PROYECTO DE EJECUCIÓN
						A0	1:150	P. OBRA CIVIL. DISP. GENERAL DE LA CANALIZACIÓN
								HOJA: Rev. 6 DE 7 00
00	Enero 2025	Novotec	Novotec	Quantum	Quantum		Otor I	SET AMPLIACIÓN PRE-RUEDA
Rev.	Fecha	Proyectado	Dibujado	Comprobado	Aprobado	novotec		PROMOTORES 400/220 kV


DETALLES CANAL DE CABLEADO

						FORMATO A3	S/E	DENOMINACION: TITULO DEL PLANO:	PROYECTO DE EJECUCIÓN
								MOLO BLET LANO.	PLANTA OBRA CIVIL. DETALLES
00	Enero 2025	Novotec	Novotec	Quantum	Quantum	nov	otec	1	AMPLIACIÓN PRE-RUEDA ROMOTORES 400/220 kV
Rev.	Fecha	Proyectado	Dibujado	Comprobado	Aprobado				OMOTORES 400/220 KV

OBRA CIVIL. DETALLES DE CANALIZACIÓN HOJA: 7 DE 7

Rev. 00 CIÓN PRE-RUEDA RES 400/220 kV PLANO Nº.: 6

LEYENDA SOMBREADO

SOLDADURA "CADWELD" PARA UNIÓN EN "CRUZ" DE

FUERA DE PROYECTO

LACION DE MATERIALES PARA EL MONTAJE DE P.aT..

CABLE DE TIERRA DESNUDO Cu 120 mm² ENTERRADO A 0.80 Mts. DE PROFUNDIDAD (C-1) CABLE DE TIERRA DESNUDO Cu 120 mm² ENTERRADO A 0.80 Mts. POR DEBAJO DE LOS EDIFICIOS

CABLE Cu 120 mm² (A) SOLDADURA "CADWELD" PARA UNIÓN EN "L" DE CABLE Cu 120 mm² (B)

SOLDADURA "CADWELD" PARA UNIÓN EN "T" DE CABLE Cu 120 mm² (C)

SOLDADURA PARA UNIÓN DE P.aT. A CIMENTACIONES DE CABLE Cu 120 mm² (M) SOLDADURA PARA UNIÓN DE P.aT. A PERFILERIA DEL

CERRAMIENTO EXTERIOR DE CABLE Cu 120 mm² (M)

-NO EXISTE AFECCIÓN A LA RED DE PUESTA A TIERRA DE LA SET SERRA DO COLMO.

- COTAS Y ELEVACIONES EN METROS.

- EL CABLE DE LA MALLA DE PUESTA A TIERRA SERA DE Cu DESNUDO

- TODO PASO DE CABLE DE P. a T. A TRAVÉS DEL HORMIGON DEBERÁ IR EMBEBIDO EN TUBOS DE PVC. - LA POSICIÓN DE LA MALLA DE PUESTA A TIERRA ES APROXIMADA,

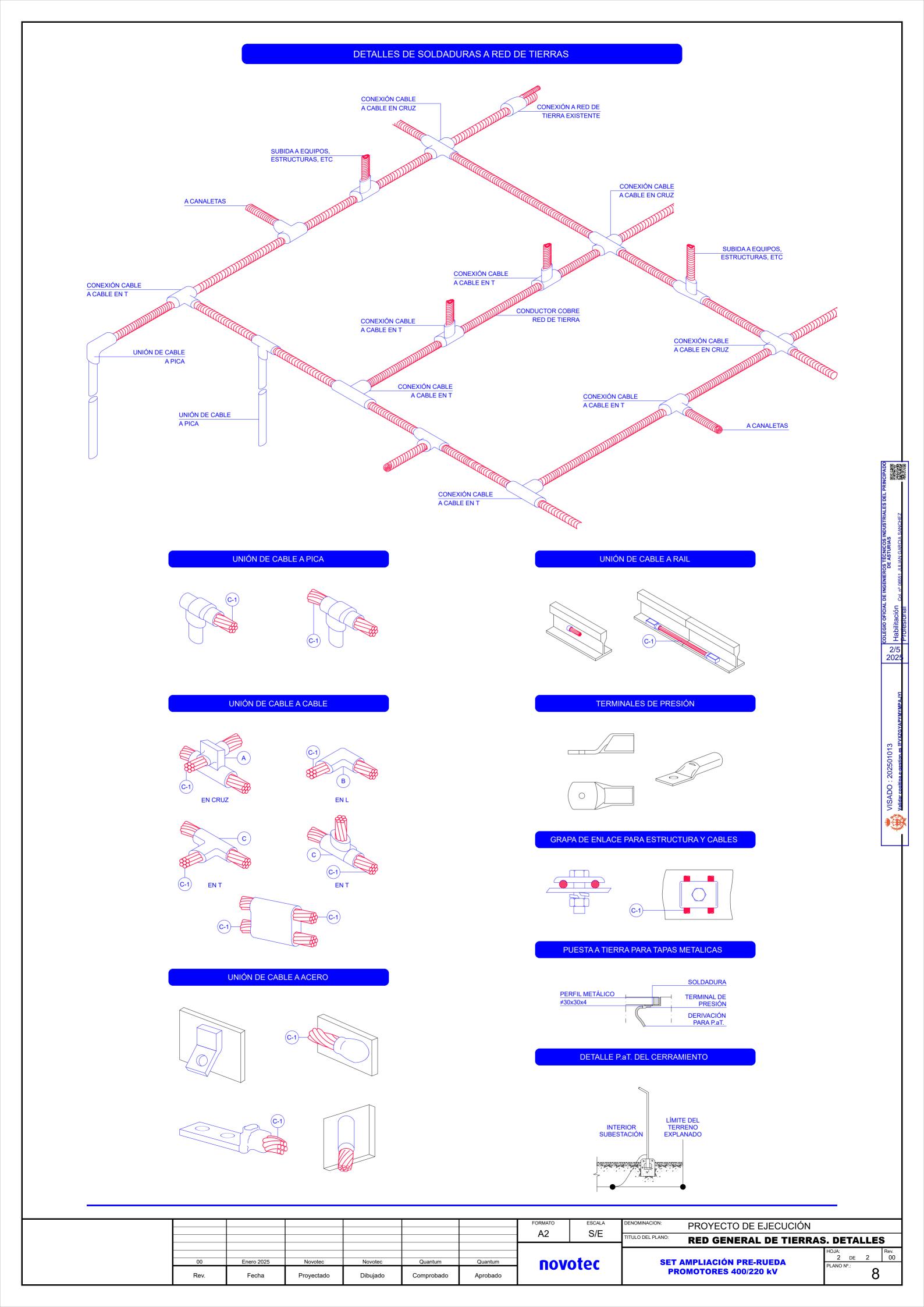
LA SITUACIÓN EXACTA SE DETERMINARÁ SOBRE EL TERRENO. - LOS ELEMENTOS RELACIONADOS A CONTINUACIÓN SERÁN CONECTADOS A LA RED DE PUESTA A TIERRA DE LOS ELEMENTOS ELÉCTRICOS DEL ANILLO INTERIOR DEL EDIFICIO:

- ELEMENTOS MECÁNICOS: ESTRUCTURA, CARCASAS, TUBERIAS Y BARANDILLAS.

- ELEMENTOS ELÉCTRICOS:

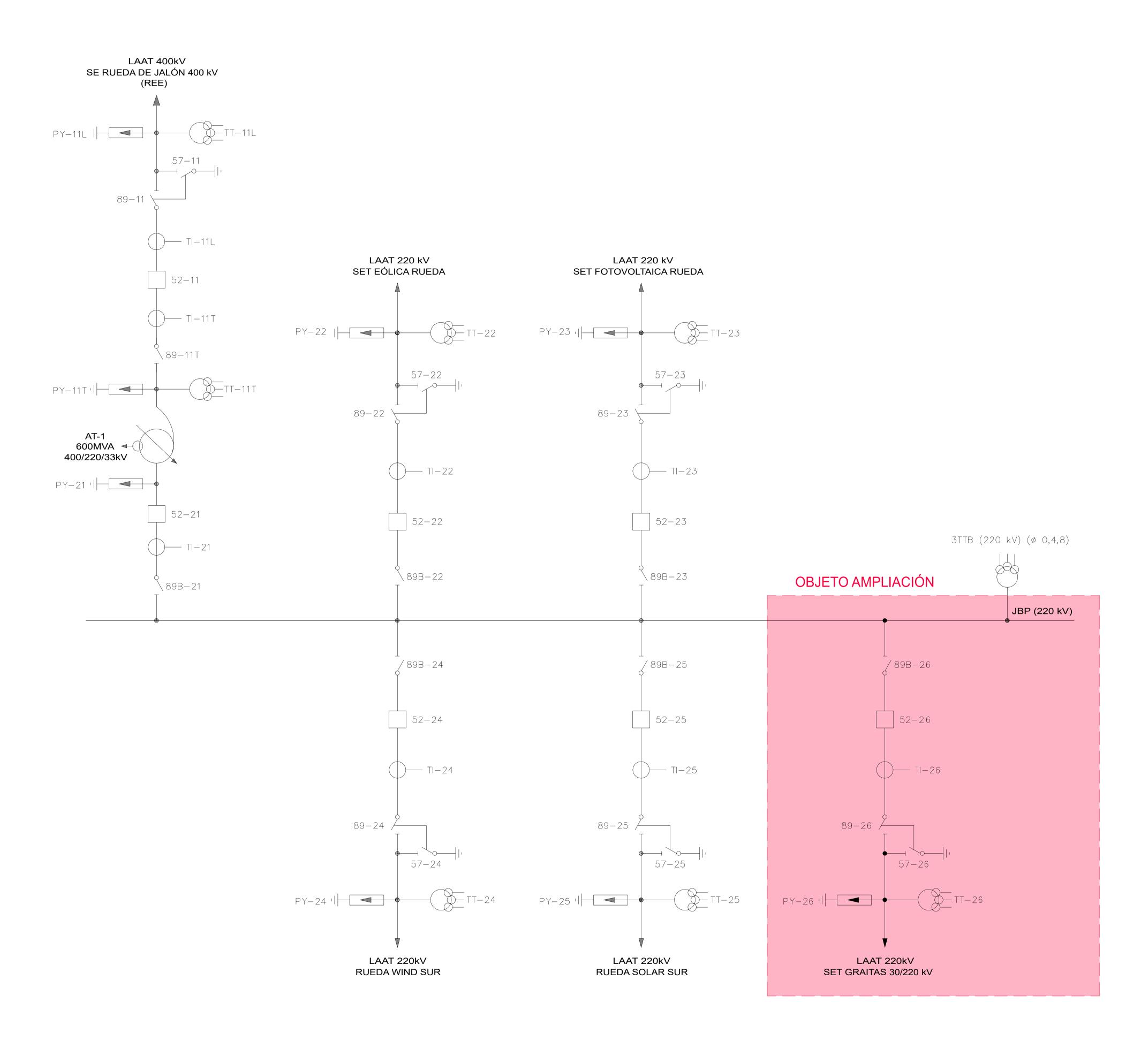
ARMARIOS ELÉCTRICOS, ALUMBRADO, TOMAS DE CORRIENTE, SISTEMAS DE CONTROL, BANDEJAS, SOPORTES DE CABLES, ARMADURAS DE CABLES Y CON CARÁCTER GENERAL CUALQUIER ELEMENTO METÁLICO.

- EL SISTEMA DE PUESTA A TIERRA DE LA APARAMENTA UBICADA EN LAS PLATAFORMAS DE LAS SUBESTACIONES SET ICE AVELLANOSA Y AMPLIACIÓN SET ICE AVELLANOSA SE PLANTEARÁN EN SUS RESPECTIVOS PROYECTOS

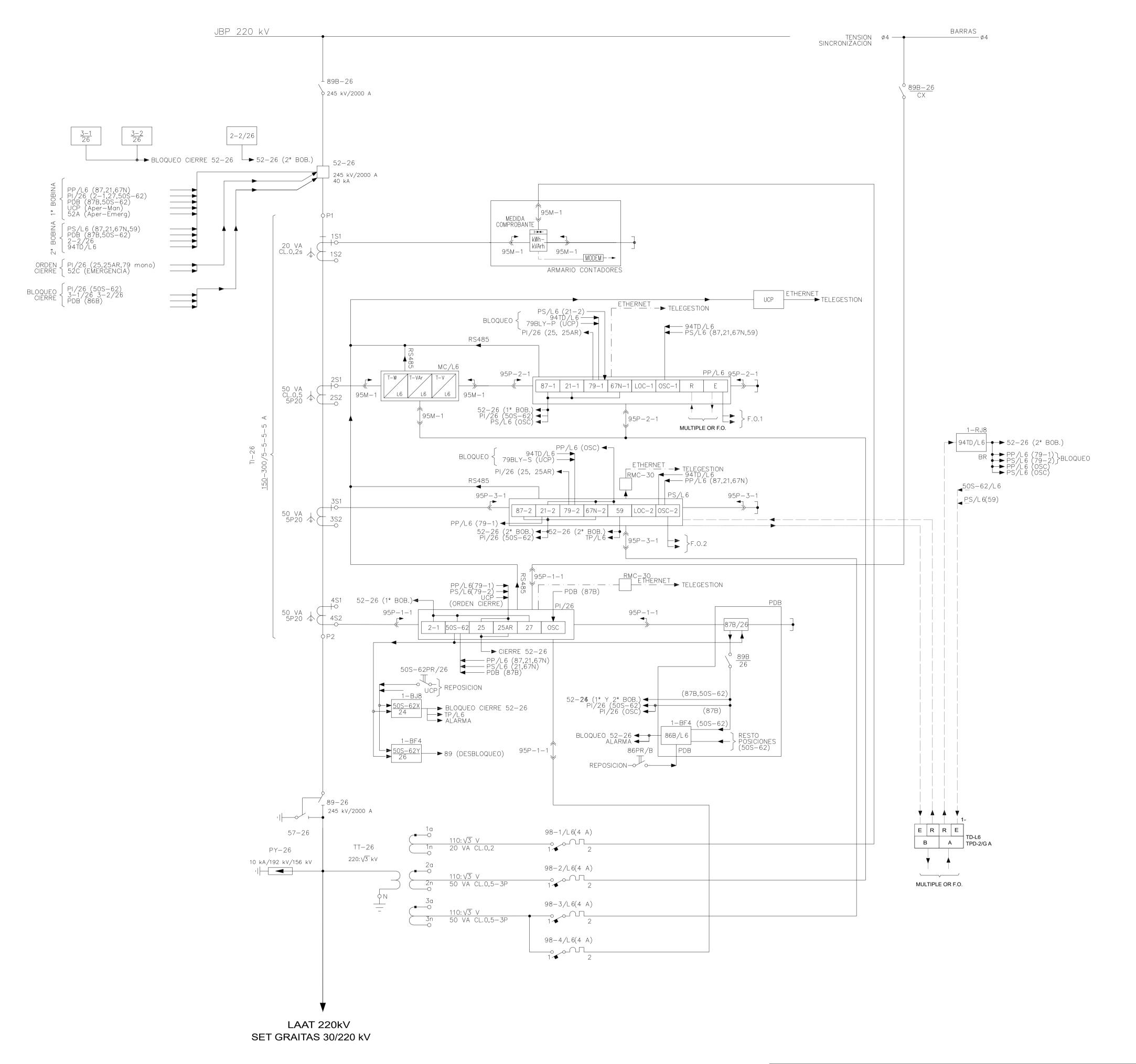

PROYECTO DE EJECUCIÓN

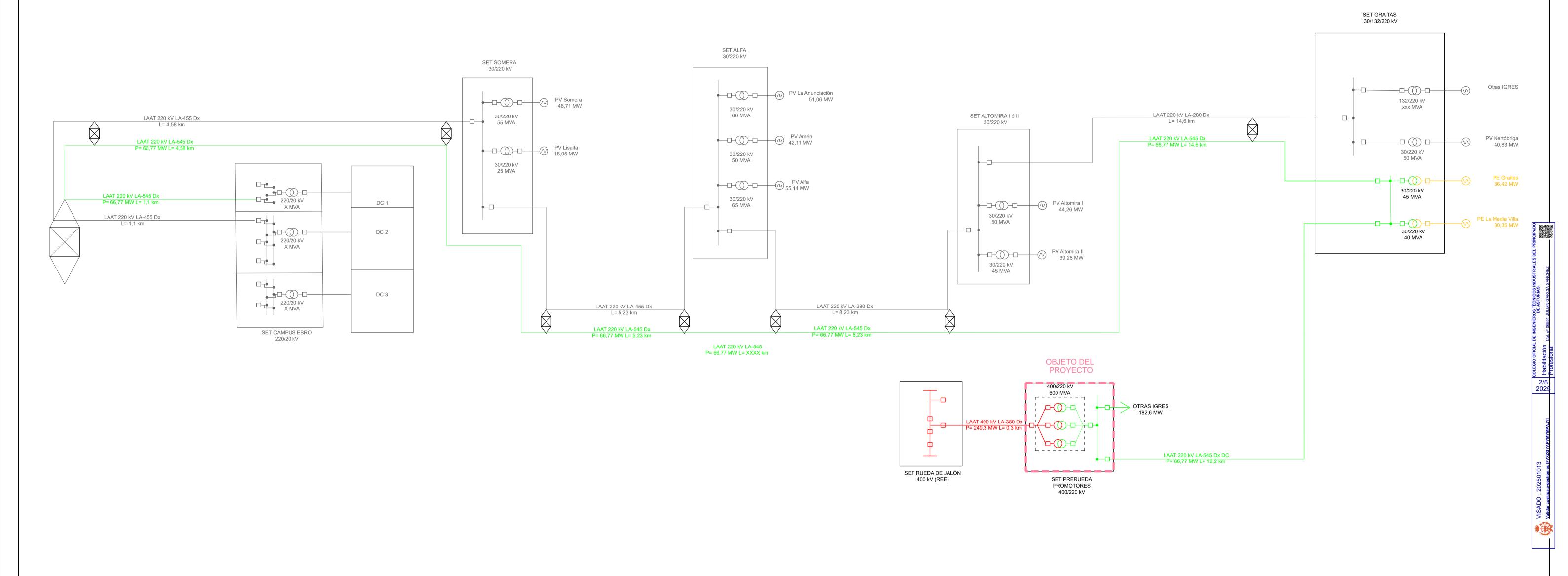
A0

1:150


RED GENERAL DE TIERRAS SET AMPLIACIÓN PRE-RUEDA

PROMOTORES 400/220 kV





						FORMATO		DENOMINACION:	PROYECTO DE EJECUCIÓN			
						A1	S/E	TITULO DEL PLANO:	UNIFILAR SIPLIFICADO			
							. 4			HOJA: 1 DE	1	Rev.
00	Enero 2025	Novotec	Novotec	Quantum	Quantum	nove	otec		AMPLIACIÓN PRE-RUEDA	PLANO Nº.:		
Rev.	Fecha	Proyectado	Dibujado	Comprobado	Aprobado			PR	COMOTORES 400/220 kV		8	

00 Enero 2025 Novotec Novotec Quantum Quantum OVOTEC SET AMPLIACIÓN PRE-RUEDA PLANO №: DOUTE PROMOTORES 400/220 kV							FORMATO A 4		DENOMINACION: PROYECTO DE EJECUCIÓN		
00 Enero 2025 Novotec Novotec Quantum Quantum Novotec SET AMPLIACIÓN PRE-RUEDA PLANO Nº.:							A1	S/E	TITULO DEL PLANO: UNIFILAR PROTECCIONES LÍNEA	A AMPLIACIÓN	
PROMOTORES 400/220 kV	00	5 0005		N	0 1			. 4			ev. 00
Rev Fecha Provectado Dibujado Comprehado Aprobado	Rev.	Fecha	Proyectado	Novotec Dibujado	Comprobado	Quantum Aprobado	nov	otec	PROMOTORES 400/220 kV	PLANO Nº.:	

Instalaciones pertenecientes a la red de transporte SE Subestación conexión Red de Transporte		
Instalaciones no transporte SC Subestación colectora G Generador LR Línea conexión a red LRP Línea parque TR Transformador de conexión a red TRP Transformador parque	Niveles de tensión: 400 kV 220 kV 132-110 kV 66-45 kV Línea de conexión	nsformador de conexión Nudo de conexión Generador

						FORMATO A 1	S/E	DENOMINACION:	PROYECTO DE EJECUCIÓN		
								TITULO DEL PLANO:	ESQUEMA GENERAL DE E	VACUACI	ÓN
00	Enero 2025	Novotec	Novotec	Quantum	Quantum	nov	otoc	SET	· AMPLIACIÓN PRE-RUEDA	HOJA: 1 DE	1 Rev. 00
Rev.	Fecha	Proyectado	Dibujado	Comprobado	Aprobado		otet		ROMOTORES 400/220 kV	PLANO Nº.:	10

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Documento 04: Estudio de Seguridad y Salud Enero 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE

1.	OB.	JETO		. 4	IPADO	
2.	DA	tos G	ENERALES	. 4	PRINC	30000
	2.1.	TIPO	DE TRABAJO	.4	ES DEI	
	2.2.	ACTI	VIDADES PRINCIPALES	.4	STRIAL	CHEZ
	2.3.	SITU	ACIÓN	.5	OS INDU	CIA SAN
	2.4.	PI A7	O DE EJECUCIÓN	5	STU	Col. nº 06551 JULIAN GARCIA SANCHEZ
	2.5.	NÚM	IERO DE OPERARIOS	.5	EROS . DE	51 JULI,
	2.6.	OFIC	CIOS	.5	INGEN	I. nº 065
	2.7.	MAG	QUINARIA Y MEDIOS AUXILIARES	.6	CIAL DE	_
	2.8.	INSTA	QUINARIA Y MEDIOS AUXILIARES	.7	310 OF	Profesional
	2.9.		LISIS DE RIESGOS		= -	
	2.10.		ESGOS GENERALES		2/	5 25
	2.11.		ESGOS ESPECÍFICOS			
	2.1		excavaciones			[\r
	2.11		VOLADURAS			MYMPA
	2.11		TRABAJO CON FERRALLA			GYAPY
	2.11		TRABAJO DE ENCOFRADO Y DESENCOFRADO		13	s [FVXZ
	2.11		TRABAJOS CON HORMIGÓN1		: 202501013	estion.e
	2.1		MANIPULACIÓN DE MATERIALES			alidar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY]
	2.1		TRANSPORTE DE MATERIALES Y EQUIPOS DENTRO DE LA OBRA		ğ	dar cog
	2.1		PREFABRICACIÓN Y MONTAJE DE ESTRUCTURAS, CERRAMIENTOS Y EQUIPOS		<u>=</u>	Vali
	2.1		MANIOBRA DE IZADO, SITUACIÓN EN OBRA Y MONTAJE DE EQUIPOS Y MATERIALES			Đ,
		1.7.	MONTAJE DE INSTALACIONES. SUELOS Y ACABADOS	ı		
	2.12.		AQUINARIA Y MEDIOS AUXILIARES			
	2.12		MÁQUINAS FIJAS Y HERRAMIENTAS ELÉCTRICAS			
	2.12		MEDIOS DE ELEVACIÓN1			
	2.12	2.3.	ANDAMIOS, PLATAFORMAS Y ESCALERAS1	12		

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 2

	2.12.4.	EQUIPOS DE SOLDADURA ELÉCTRICA Y OXIACETILÉNICA	12		
3.	MEDIDA	S PREVENTIVAS	13		
3	.1. PRO	DTECCIONES COLECTIVAS	13) E	en e
	3.1.1.	RIESGOS GENERALES	13	NCIPAD 画製館	
	3.1.2.	RIESGOS ESPECÍFICOS	- 10	_	
3	.2. PRO	DTECCIONES PERSONALES	20	(IALES I	ZE
3	.3. REV	TECCIONES PERSONALES	21	NDUSIR	SANCHE
4.	INSTALA	CIONES ELÉCTRICAS PROVISIONALES	22	rurias	JULIAN GARCIA SANCHEZ
4	.1. RIES	SGOS PREVISIBLES	22	DE AST	ULIAN (
4	.2. MEI	DIDAS PREVENTIVAS	22	GENIER	ո [°] 06551 J
	4.2.1.	CUADROS DE DISTRIBUCIÓN	22	. UE	Col. n ⁶
	4.2.2.	PROLONGADORES, CLAVIJAS, CONEXIONES Y CABLES	22	•	sional
	4.2.3.	HERRAMIENTAS Y ÚTILES ELÉCTRICOS PORTÁTILES	23		nabilitacior Profesional
	4.2.4.	MÁQUINAS Y EQUIPOS ELÉCTRICOS	23	2/ 20	5
	4.2.5.	NORMAS DE CARÁCTER GENERAL	23	20	20
	4.2.6.	REVISIÓN Y MANTENIMIENTO DE LAS INSTALACIONES	23		
	4.2.7.	MEDIDAS DE PROTECCIÓN CONTRA INCENDIOS	23		/MPAJY
	4.2.8.	revisiones periódicas	24		on.es [FVXZGYAPYMYMPAJY]
4	.3. ALM	MACENAMIENTO Y USO DE GASES	24	3	[FVXZG
	4.3.1.	ALMACENAMIENTO	24	J101	=
	4.3.2.	USO DE BOTELLAS EN LOS TAJOS	24	: 2025	ipa.e-ge
4	.4. FOF	RMACIÓN DEL PERSONAL	25	VISADO	/alidar cogitipa.e-ges
	4.4.1.	CHARLA DE SEGURIDAD Y PRIMEROS AUXILIOS PARA PERSONAL DE INGRESO EN LA OBRA	25	SIV.	Valid
	4.4.2.	CHARLA SOBRE RIESGOS ESPECÍFICOS	25		*
4	.5. REU	iniones de seguridad	26		
4	.6. MEI	DICINA ASISTENCIAL	26		
	4.6.1.	CONTROL MÉDICO	26		
	4.6.2.	MEDIOS DE ACTUACIÓN Y PRIMEROS AUXILIOS	26		
	4.6.3.	MEDICINA ASISTENCIAL EN INCAPACIDADES LABORALES TRANSITORIAS O PERMANENTES	27		

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 3

	4.7.	VESTUARIOS Y ASEOS	27	
5.	PLIE	GO DE CONDICIONES	27	
	5.1.	OBJETO	27 [?	<u> </u>
	5.2.	DISPOSICIONES LEGALES REGLAMENTARIAS	27	KINCIPA 職権国
	5.3.	PROTECCIONES PERSONALES	29	, חבר רי
	5.4.	PROTECCIONES COLECTIVAS	29	KIALE
	5.5.	REVISIONES TÉCNICAS DE SEGURIDAD	30	S
6.	PLA	NOS	30	STURIA
7.	WEI	DICIONES Y PRESUPUESTO ECONÓMICO5	51	S E A
	7.1.	OBJETO	51	GENE
	7.2.	PRESUPUESTO PARCIAL	52	AL DE
	7.2.	1. CAPÍTULO 1: PROTECCIONES INDIVIDUALES	52	ָ בְּיִבְּי
	7.2.	2. CAPÍTULO 2: PROTECCIONES COLECTIVAS5	53	COLEG
	7.2.		53	20
	7.2.	4. CAPÍTULO 4: INSTALACIONES DE HIGIENE Y BIENESTAR	54	
	7.2.	5. CAPÍTULO 5: FORMACIÓN Y REUNIONES5	54	
8.	PRF	SUPUESTO GENERAL 5	55	

Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional

2/5 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 4

1. OBJETO

Este Estudio de Seguridad y Salud establece, durante la construcción de esta obra, las previsiones respecto a la prevención de riesgos de accidentes y enfermedades profesionales, así como los derivados de los trabajos de reparación, conservación, entretenimiento y mantenimiento, y las instalaciones preceptivas de higiene y bienestar de los trabajadores.

El "Estudio de Seguridad y Salud" se redacta de acuerdo con el Real Decreto 1627/1997, de 24 de octubre, por el que se implanta la obligatoriedad de la inclusión de un Estudio de Seguridad y Salud en el Trabajo en los proyectos de Construcción con una inversión superior a 450.759 €.

2. DATOS GENERALES

2.1. Tipo de trabajo

El trabajo a realizar por contratistas de distintas especialidades en la ejecución del presente Proyecto consiste básicamente en el desarrollo de las siguientes fases de construcción:

- Cimentaciones de las estructuras y bastidores metálicos.
- Canalizaciones para cables de potencia, control y conductores de tierra.

2.2. Actividades principales

Las actividades principales a ejecutar en el desarrollo de los trabajos son básicamente las siguientes:

- Conexión de la nueva aparamenta a la red de tierras.
- Medida de tensiones de paso y contacto.
- Montaje de estructuras y aparamenta eléctrica de intemperie.
- Colocación de embarrados y piezas de conexión para unión de la aparamenta.
- Montaje de equipos de protección, medida, control y comunicaciones en el edificio, así como la instalación de la parte de servicios auxiliares.
- Tendido y conexionado de los cables de potencia y demás elementos auxiliares.
- Tendido y conexionado de los cables de control, fuerza y comunicaciones, y demás elementos auxiliares.
- Pruebas funcionales.
- Puesta en servicio de la instalación.

PROYECTO DE EJECUCIÓN

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 5

2.3. Situación

La Subestación SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV estará ubicada en el Término Municipal de Rueda de Jalón, Provincia de Zaragoza. Ocupa una superficie total aproximada de 10.005 m² y las coordenadas aproximadas de los vértices del cerramiento son (ETRS 89 HUSO 30):

Vértice	Coordenada X	Coordenada Y
Α	642.333	4.612.044
В	642.363	4.612.116
С	642.290	4.612.147
D	642.218	4.612.138
E	642.202	4.612.099

2.4. Plazo de ejecución

El periodo de tiempo estimado para la ejecución de las obras del citado Proyecto es de 2 meses.

2.5. Número de operarios

Se considera una punta máxima de quince (15) trabajadores, con una media de seis (6) trabajadores en obra.

2.6. Oficios

La mano de obra directa prevista la compondrán trabajadores de los siguientes oficios:

- Jefes de Equipo, Mandos de Brigada
- Electricistas
- Encofradores
- Ferrallistas
- Albañiles
- Pintores
- Gruístas y maquinistas
- Especialistas de acabados diversos
- Ayudantes

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 6

La mano de obra indirecta estará compuesta por:

- Jefes de Obra
- Técnicos de ejecución/Control de Calidad/Seguridad
- Encargados
- Administrativos

2.7. Maquinaria y medios auxiliares

La maquinaria y los medios auxiliares más significativos que se prevé utilizar para la ejecución de los trabajos objeto del presente Estudio, son los que se relacionan a continuación:

- Equipo de soldadura eléctrica.
- Equipo de soldadura oxiacetilénica-oxicorte.
- Máquina eléctrica de roscar.
- Camión de transporte.
- Grúa móvil.
- Camión grúa.
- Pistolas de fijación.
- Taladradoras de mano.
- Cortatubos.
- Curvadoras de tubos.
- Radiales y esmeriladoras.
- Trácteles, poleas, aparejos, eslingas, grilletes, etc.
- Máquina de excavación con martillo hidráulico.
- Máquina retroexcavadora mixta.
- Hormigoneras autopropulsadas.
- Camión volquete.
- Máquina niveladora.
- Minirretroexcavadora
- Compactadora.
- Compresor.
- Martillo rompedor y picador, etc.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 7

Plataforma de elevación

Entre los medios auxiliares cabe mencionar los siguientes:

- Andamios metálicos modulares.
- Escaleras de mano.
- Escaleras de tijera.
- Cuadros eléctricos auxiliares.
- Instalaciones eléctricas provisionales.
- Herramientas de mano.
- Bancos de trabajo.

2.8. Instalaciones provisionales de obra

Para el suministro de energía a las máquinas y herramientas eléctricas propias de los trabajos objeto del presente Estudio, los contratistas instalarán cuadros de distribución con tomas de corriente alimentados desde las instalaciones de la propiedad o mediante grupos electrógenos.

Tanto los riesgos previsibles como las medidas preventivas a aplicar para los trabajos en instalaciones, elementos y máquinas eléctricas son analizados en los apartados siguientes.

2.9. Análisis de riesgos

Analizamos a continuación los riesgos previsibles inherentes a las actividades de ejecución previstas, así como las derivadas del uso de maquinaria, medios auxiliares y manipulación de instalaciones, máquinas o herramientas eléctricas.

Con el fin de no repetir innecesariamente la relación de riesgos analizaremos primero los riesgos generales, que pueden darse en cualquiera de las actividades, y después seguiremos con el análisis de los específicos de cada actividad.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 8

2.10. Riesgos generales

Entendemos como riesgos generales aquéllos que pueden afectar a todos los trabajadores, independientemente de la actividad concreta que realicen. Se prevé que puedan darse los siguientes:

- Caídas de objetos o componentes sobre personas.
- Caídas de personas a distinto nivel.
- Caídas de personas al mismo nivel.
- Proyecciones de partículas a los ojos.
- Conjuntivitis por arco de soldadura u otros.
- Heridas en manos o pies por manejo de materiales.
- Sobre esfuerzos.
- Golpes y cortes por manejo de herramientas.
- Golpes contra objetos.
- Atrapamientos entre objetos.
- Quemaduras por contactos térmicos.
- Exposición a descargas eléctricas.
- Incendios y explosiones.
- Atrapamiento por vuelco de máquinas, vehículos o equipos.
- Atropellos o golpes por vehículos en movimiento.
- Lesiones por manipulación de productos químicos.
- Lesiones o enfermedades por factores atmosféricos que comprometan la seguridad o salud.
- Inhalación de productos tóxicos.

2.11. Riesgos específicos

Nos referimos aquí a los riesgos propios de actividades concretas que afectan sólo al personal que realiza trabajos en las mismas.

Este personal estará expuesto a los riesgos generales indicados en el punto 3.1, más los específicos de su actividad.

A tal fin analizamos a continuación las actividades más significativas.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 9

2.11.1. Excavaciones

Además de los generales, pueden ser inherentes a las excavaciones los siguientes riesgos:

- Desprendimiento o deslizamiento de tierras.
- Atropellos y/o golpes por máquinas o vehículos.
- Colisiones y vuelcos de maquinaria.
- Riesgos a terceros ajenos al propio trabajo.

2.11.2. Voladuras

- Proyecciones de piedras
- Explosiones incontroladas por corrientes erráticas o manipulación incorrecta.
- Barrenos fallidos.
- Elevado nivel de ruido
- Riesgos a terceras personas.

2.11.3. Trabajo con ferralla

Los riesgos más comunes relativos a la manipulación y montaje de ferralla son:

- Cortes y heridas en el manejo de las barras o alambres.
- Atrapamientos en las operaciones de carga y descarga de paquetes de barras o en la colocación de las mismas.
- Torceduras de pies, tropiezos y caídas al mismo nivel al caminar sobre las armaduras.
- Roturas eventuales de barras durante el doblado.

2.11.4. Trabajo de encofrado y desencofrado

En esta actividad podemos destacar los siguientes:

- Desprendimiento de tableros.
- Pinchazos con objetos punzantes.
- Caída de materiales (tableros, tablones, puntales, etc.).
- Caída de elementos del encofrado durante las operaciones de desencofrado.
- Cortes y heridas en manos por manejo de herramientas (sierras, cepillos, etc.) y materiales.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 10

2.11.5. Trabajos con hormigón

La exposición y manipulación del hormigón implica los siguientes riesgos:

- Salpicaduras de hormigón a los ojos.
- Hundimiento, rotura o caída de encofrados.
- Torceduras de pies, pinchazos, tropiezos y caídas al mismo y a distinto nivel, al moverse sobre las estructuras.
- Dermatitis en la piel.
- Aplastamiento o atrapamiento por fallo de entibaciones.
- Lesiones musculares por el manejo de vibradores.
- Electrocución por ambientes húmedos.

2.11.6. Manipulación de materiales

Los riesgos propios de esta actividad están incluidos en la descripción de riesgos generales.

2.11.7. Transporte de materiales y equipos dentro de la obra

En esta actividad, además de los riesgos enumerados en el punto 3.1., son previsibles los siguientes:

- Desprendimiento o caída de la carga, o parte de la misma, por ser excesiva o estar mal sujeta.
- Golpes contra partes salientes de la carga.
- Atropellos de personas.
- Vuelcos.
- Choques contra otros vehículos o máquinas.
- Golpes o enganches de la carga con objetos, instalaciones o tendidos de cables.

2.11.8. Prefabricación y montaje de estructuras, cerramientos y equipos

De los específicos de este apartado cabe destacar:

- Caída de materiales por la mala ejecución de la maniobra de izado y acoplamiento de los mismos o fallo mecánico de equipos.
- Caída de personas desde altura por diversas causas.
- Atrapamiento de manos o pies en el manejo de los materiales o equipos.

Página 11

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

- Caída de objetos o herramientas sueltas.
- Explosiones o incendios por el uso de gases o por proyecciones incandescentes.

2.11.9. Maniobra de izado, situación en obra y montaje de equipos y materiales

Como riesgos específicos de estas maniobras podemos citar los siguientes:

- Caída de materiales, equipos o componentes de los mismos por fallo de los medios de elevación o error en la maniobra.
- Caída de pequeños objetos o materiales sueltos (cantoneras, herramientas, etc.) sobre personas.
- Caída de personas desde altura en operaciones de estrobado o desestrobado de las piezas.
- Atrapamientos de manos o pies.
- Aprisionamiento/aplastamiento de personas por movimientos incontrolados de la carga.
- Golpes de equipos, en su izado y transporte, contra otras instalaciones (estructuras, líneas eléctricas, etc.) caída o vuelco de los medios de elevación.

2.11.10. Montaje de instalaciones. Suelos y acabados

Los riesgos inherentes a estas actividades podemos considerarlos incluidos dentro de los generales, al no ejecutarse a grandes alturas ni presentar aspectos relativamente peligrosos.

2.12. Maquinaria y medios auxiliares

Analizamos en este apartado los riesgos que además de los generales, pueden presentarse en el uso de maquinaria y de medios auxiliares relacionados en el apartado 6.2.7.

Diferenciamos estos riesgos clasificándolos en los siguientes grupos:

2.12.1. Máquinas fijas y herramientas eléctricas

Los riesgos más significativos son:

- Las características de trabajos en elementos con tensión eléctrica en los que pueden producirse accidentes por contactos, tanto directos como indirectos.
- Caídas de personal al mismo, o distinto nivel por desorden de mangueras.
- Lesiones por uso inadecuado, o malas condiciones de máquinas giratorias o de corte.
- Proyecciones de partículas.

novotec

Página 12

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

2.12.2. Medios de elevación

Consideramos como riesgos específicos de estos medios, los siguientes:

- Caída de la carga por deficiente estrobado o maniobra.
- Rotura de cable, gancho, estrobo, grillete o cualquier otro medio auxiliar de elevación.
- Golpes o aplastamientos por movimientos incontrolados de la carga.
- Exceso de carga con la consiguiente rotura, o vuelco, del medio correspondiente.
- Fallo de elementos mecánicos o eléctricos.
- Caída de personas a distinto nivel durante las operaciones de movimiento de cargas.

2.12.3. Andamios, plataformas y escaleras

Son previsibles los siguientes riesgos:

- Caídas de personas a distinto nivel.
- Caída del andamio por vuelco.
- Vuelcos o deslizamientos de escaleras.
- Caída de materiales o herramientas desde el andamio.
- Los derivados de padecimiento de enfermedades no detectadas (epilepsia, vértigo, etc.).

2.12.4. Equipos de soldadura eléctrica y oxiacetilénica

Los riesgos previsibles propios del uso de estos equipos son los siguientes:

- Incendios.
- Quemaduras.
- Los derivados de la inhalación de vapores metálicos.
- Explosión de botellas de gases.
- Proyecciones incandescentes, o de cuerpos extraños.
- Contacto con la energía eléctrica.

PROYECTO DE EJECUCIÓN

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 13

3. MEDIDAS PREVENTIVAS

Para disminuir en lo posible los riesgos previstos en el apartado anterior, ha de actuarse sobre los factores que, por separado o en conjunto, determinan las causas que producen los accidentes. Nos estamos refiriendo al factor humano y al factor técnico.

La actuación sobre el factor humano se basará fundamentalmente en la formación, mentalización e información de todo el personal que participe en los trabajos del presente Estudio, así como en aspectos ergonómicos y condiciones ambientales.

Con respecto a la actuación sobre el factor técnico, se actuará básicamente en los siguientes aspectos.

- Protecciones colectivas.
- Protecciones personales.
- Controles y revisiones técnicas de seguridad.

En base a los riesgos previsibles enunciados en el punto anterior, analizamos a continuación las medidas previstas en cada uno de estos campos.

3.1. Protecciones colectivas

Siempre que sea posible se dará prioridad al uso de protecciones colectivas, ya que su efectividad es muy superior a la de las protecciones personales. Sin excluir el uso de estas últimas, las protecciones colectivas previstas, en función de los riesgos enunciados, son las siguientes:

3.1.1. Riesgos generales

Nos referimos aquí a las medidas de seguridad a adoptar para la protección de riesgos que consideramos comunes a todas las actividades, y que son las siguientes:

- Señalizaciones de acceso a obra y uso de elementos de protección personal.
- Acotamiento y señalización de zona donde exista riesgo de caída de objetos desde altura.
- Se montarán barandillas resistentes en los huecos por los que pudiera producirse caída de personas.
- En cada tajo de trabajo, se dispondrá de, al menos, un extintor portátil de polvo polivalente.
- Si algún puesto de trabajo generase riesgo de proyecciones (de partículas, o por arco de soldadura) a terceros se colocarán mamparas opacas de material ignífugo.
- Si se realizasen trabajos con proyecciones incandescentes en proximidad de materiales combustibles, se retirarán éstos o se protegerán con lona ignífuga.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 14

- Se mantendrán ordenados los materiales, cables y mangueras para evitar el riesgo de golpes o caídas al mismo nivel por esta causa.
- Los restos de materiales generados por el trabajo se retirarán periódicamente para mantener limpias las zonas de trabajo.
- Los productos tóxicos y peligrosos se manipularán según lo establecido en las condiciones de uso específicas de cada producto.
- Respetar la señalización y limitaciones de velocidad fijadas para circulación de vehículos y maquinaria en el interior de la obra.
- Aplicar las medidas preventivas contra riesgos eléctricos que desarrollaremos más adelante.
- Todos los vehículos llevarán los indicadores ópticos y acústicos que exija la legislación vigente.
- Proteger a los trabajadores contra las inclemencias atmosféricas que puedan comprometer su seguridad y su salud.

3.1.2. Riesgos específicos

Las protecciones colectivas previstas para la prevención de estos riesgos, siguiendo el orden de los mismos establecido en el punto 3.2., son las siguientes:

En excavaciones

- Se entibarán o taludarán todas las excavaciones verticales de profundidad superior a 1,5 m
- Se señalizarán las excavaciones, como mínimo a 1 m de su borde.
- No se acopiarán tierras ni materiales a menos de 2 m del borde de la excavación.
- Las excavaciones de profundidad superior a 2 m, y en cuyas proximidades deban circular personas, se protegerán con barandillas resistentes de 90 cm de altura, las cuales se situarán, siempre que sea posible, a 2 m del borde de la excavación.
- Los accesos a las zanjas o trincheras se realizarán mediante escaleras sólidas que sobrepasan en 1 m el borde de éstas.
- Las máquinas excavadoras y camiones solo serán manejadas por personal capacitado, con el correspondiente permiso de conducir, que será responsable, así mismo, de la adecuada conservación de su máquina.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 15

En voladuras

Las voladuras serán realizadas por una empresa especializada que elaborará el correspondiente plan de voladuras. En su ejecución, además de cumplir la legislación vigente sobre explosivos (R.D. 2114/78 B.O.E. 07.09.78), se tomarán, como mínimo, las siguientes medidas de seguridad:

- Acordonar la zona de "carga" y "pega" a la que, bajo ningún concepto, deben acceder personas ajenas a las mismas.
- Anunciar, con un toque de sirena 15 minutos antes, la proximidad de la voladura, con dos toques la inmediatez de la detonación y con tres el final de la voladura, permitiéndose la reanudación de la actividad en la zona.
- En el perímetro de la zona acordonada se colocarán señales de "prohibido el paso Voladuras".
- Antes de la "pega", una persona recorrerá la zona comprobando que no queda nadie, y se pondrán vigilantes en lugares estratégicos de acceso a la zona para impedir la entrada de personas o vehículos.
- El responsable de la voladura y los artilleros comprobarán, cuando se hayan disipado los gases, que la "pega" ha sido completa y comprobará que no quedan terrenos inestables, saneando éstos si fuera necesario antes de iniciar los trabajos.

<u>En trabajos en altura</u>

Es evidente que el trabajo en altura se presenta dentro de muchas de las actividades que se realizan en la ejecución de este Proyecto y, como tal, las medidas preventivas relativas a las mismas deberán ser tratadas conjuntamente.

Sin embargo, dada la elevada gravedad de las consecuencias que, generalmente, se derivan de las caídas de altura, se considera oportuno y conveniente remarcar, en este apartado concreto, las medidas de prevención básicas y fundamentales que deben aplicarse para eliminar, en la medida de lo posible, los riesgos inherentes a los trabajos en altura.

Destacaremos, entre otras, las siguientes medidas:

Para evitar la caída de objetos:

- Coordinar los trabajos de forma que no se realicen trabajos superpuestos.
- Ante la necesidad de trabajos en la misma vertical, poner las oportunas protecciones (redes, marquesinas, etc.).
- Acotar y señalizar las zonas con riesgo de caída de objetos.
- Señalizar y controlar la zona donde se realicen maniobras con cargas suspendidas, hasta que éstas se encuentren totalmente apoyadas.

Página 16

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Emplear cuerdas para el guiado de cargas suspendidas, que serán manejadas desde fuera de la zona de influencia de la carga, y acceder a esta zona sólo cuando la carga esté prácticamente arriada.

Para evitar la caída de personas:

- Se montarán barandillas resistentes en todo el perímetro o bordes de plataformas, forjados, etc. por los que pudieran producirse caídas de personas.
- Se protegerán con barandillas o tapas de suficiente resistencia los huecos existentes en forjados, así como en paramentos verticales si éstos son accesibles o están a menos de 1,5 m del suelo.
- Las barandillas que se quiten o huecos que se destapen para introducción de equipos, etc., se mantendrán perfectamente controlados y señalizados durante la maniobra, reponiéndose las correspondientes protecciones nada más finalizar éstas.
- Los andamios que se utilicen (modulares o tubulares) cumplirán los requerimientos y condiciones mínimas definidas en la O.G. S. H.T., destacando entre otras:
 - Superficie de apoyo horizontal y resistente.
 - Si son móviles, las ruedas estarán bloqueadas y no se trasladarán con personas sobre las mismas.
 - Arriostrarlos a partir de cierta altura.
 - A partir de 2 m de altura se protegerá todo su perímetro con rodapiés y quitamiedos colocados a 45 y 90 cm del piso, el cual tendrá, como mínimo, una anchura de 60 cm.
 - No sobrecargar las plataformas de trabajo y mantenerlas limpias y libres de obstáculos.
 - En altura (más de 2 m) es obligatorio utilizar cinturón de seguridad, siempre que no existan protecciones (barandillas) que impidan la caída, el cual estará anclado a elementos, fijos, móviles, definitivos o provisionales, de suficiente resistencia.
 - Se instalarán cuerdas o cables fiadores para sujeción de los cinturones de seguridad en aquellos casos en que no sea posible montar barandillas de protección, o bien sea necesario el desplazamiento de los operarios sobre estructuras o cubiertas. En este caso se utilizarán cinturones de caída, con arnés provistos de absorción de energía.
- Las escaleras de mano cumplirán, como mínimo, las siguientes condiciones:
 - No tendrán largueros o peldaños rotos ni astillados.
 - Dispondrán de zapatas antideslizantes.
 - Las superficies de apoyo inferior y superior serán planas y resistentes.
 - Fijación o amarre por su cabeza en casos especiales y usar el cinturón de seguridad anclado a un elemento ajeno a ésta.

Col. nº 06551 JULIAN GARCIA SANCHEZ

EGIO OFICIAL DE INGENIER Habilitación Profesional

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 17

- Colocarla con la inclinación adecuada.
- Con las escaleras de tijera, ponerle tope o cadena para que no se abran, no usarlas plegadas y no ponerse a caballo en ellas.

En trabajos con ferralla

- Los paquetes de redondos se acopiarán en posición horizontal, separando las capas con durmientes de madera y evitando alturas de pilas superiores a 1,50 m.
- No se permitirá trepar por las armaduras.
- Se colocarán tableros para circular por las armaduras de ferralla.
- No se emplearán elementos o medios auxiliares (escaleras, ganchos, etc.) hechos con trozos de ferralla soldada.
- Diariamente se limpiará la zona de trabajo, recogiendo y retirando los recortes y alambres sobrantes del armado.

En trabajos de encofrado y desencofrado

- El ascenso y descenso a los encofrados se hará con escaleras de mano reglamentarias.
- No permanecerán operarios en la zona de influencia de las cargas durante las operaciones de izado y traslado de tableros, puntales, etc.
- Se sacarán o remacharán todos los clavos o puntas existentes en la madera usada.
- El desencofrado se realizará siempre desde el lado en que no puedan desprenderse los tableros y arrastrar al operario.
- Se acotará, mediante cinta de señalización, la zona en la que puedan caer elementos procedentes de las operaciones de encofrado o desencofrado.

En trabajos de hormigón

Vertidos mediante canaleta:

- Instalar topes de final de recorrido de los camiones hormigonera para evitar vuelcos.
- No situarse ningún operario detrás de los camiones hormigonera en las maniobras de retroceso.

Vertido mediante cubo con grúa:

- Señalizar con pintura el nivel máximo de llenado del cubo para no sobrepasar la carga admisible de la grúa.
- No permanecer ningún operario bajo la zona de influencia del cubo durante las operaciones de izado y transporte de éste con la grúa.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 18

- La apertura del cubo para vertido se hará exclusivamente accionando la palanca prevista para ello Para realizar tal operación se usarán, obligatoriamente, guantes, gafas y, cuando exista riesgo de caída, cinturón de seguridad.
- El guiado del cubo hasta su posición de vertido se hará siempre a través de cuerdas guía.

Para la manipulación de materiales:

- Informar a los trabajadores acerca de los riesgos más característicos de esta actividad, accidentes más habituales y forma de prevenirlos haciendo especialmente hincapié sobre los siguientes aspectos:
 - Manejo manual de materiales.
 - Acopio de materiales, según sus características.
 - Manejo/acopio de materiales tóxico/peligrosos.

Para el transporte de materiales y equipos dentro de la obra:

- Se cumplirán las normas de tráfico y límites de velocidad establecidas para circular por los viales de obra, las cuales estarán señalizadas y difundidas a los conductores.
- Se prohibirá que las plataformas y/o camiones transporten una carga superior a la identificada como máxima admisible.
- La carga se transportará amarrada con cables de acero, cuerdas o estrobos de suficiente resistencia.
- Se señalizarán con banderolas o luces rojas las partes salientes de la carga y, de producirse estos salientes, no excederán de 1,50 m.
- En las maniobras con riesgo de vuelco del vehículo, se colocarán topes y se ayudarán con un señalista.
- Cuando se tenga que circular o realizar maniobras en proximidad de líneas eléctricas, se instalarán gálibos o topes que eviten aproximarse a la zona de influencia de las líneas.
- No se permitirá el transporte de personas fuera de la cabina de los vehículos.
- No se transportarán, en ningún caso, cargas suspendidas por la pluma con grúas móviles.
- Se revisará periódicamente el estado de los vehículos de transporte y medios auxiliares correspondientes.

Para la prefabricación, izado y montaje de estructuras, cerramientos y equipos:

- Se señalizarán y acotarán las zonas en que haya riesgo de caída de materiales por manipulación, elevación y transporte de los mismos.
- No se permitirá, bajo ningún concepto, el acceso de cualquier persona a la zona señalizada y acotada en la que se realicen maniobras con cargas suspendidas.

Página 19

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

- El guiado de cargas/equipos para su ubicación definitiva, se hará siempre mediante cuerdas guía manejadas desde lugares fuera de la zona de influencia de su posible caída, y no se accederá a dicha zona hasta el momento justo de efectuar su acople o posicionamiento.
- Se taparán o protegerán con barandillas resistentes o, según los casos, se señalizarán adecuadamente los huecos que se generen en el proceso de montaje.
- Se ensamblarán a nivel de suelo, en la medida que lo permita la zona de montaje y capacidad de las grúas, los módulos de estructuras con el fin de reducir en lo posible el número de horas de trabajo en altura y sus riesgos.
- Los puestos de trabajo de soldadura estarán suficientemente separados o se aislarán con pantallas divisorias.
- La zona de trabajo, sea de taller o de campo, se mantendrá siempre limpia y ordenada.
- Los equipos/estructuras permanecerán arriostradas, durante toda la fase de montajes hasta que no se efectúe la sujeción definitiva, para garantizar su estabilidad en las peores condiciones previsibles.
- Los andamios que se utilicen cumplirán los requerimientos y condiciones mínimas definidas en la O.G.S.H.T.
- Se instalarán cuerdas o cables fiadores para sujeción de los cinturones de seguridad en aquellos
 casos en que no sea posible montar plataformas de trabajo con barandilla, o sea necesario el
 desplazamiento de operarios sobre la estructura. En estos casos se utilizarán cinturones de caída,
 con arnés provistos de absorción de energía.

De cualquier forma, dado que estas operaciones y maniobras están muy condicionadas por el estado real de la obra en el momento de ejecutarlas, en el caso de detectarse una complejidad especial se elaborará un estudio de seguridad específico al efecto.

Para maniobras de izado y ubicación en obra de materiales y equipos

Las medidas de prevención a aplicar en relación con los riesgos inherentes a este tipo de trabajos, que ya se relacionaron, están contempladas y definidas en el punto anterior, destacando especialmente las correspondientes a:

- Señalizar y acotar las zonas de trabajo con cargas suspendidas.
- No permanecer persona alguna en la zona de influencia de la carga.
- Hacer el guiado de las cargas mediante cuerdas.
- Entrar en la zona de riesgo en el momento del acoplamiento.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 20

En instalaciones de distribución de energía:

- Deberán verificarse y mantenerse con regularidad las instalaciones de distribución de energía presentes en la obra, en particular las que estén sometidas a factores externos.
- Las instalaciones existentes antes del comienzo de la obra deberán estar localizadas, verificadas y señalizadas claramente.
- Cuando existan líneas de tendidos eléctricos aéreos que pueda afectar a la seguridad en la obra será necesario desviarlas fuera del recinto de la obra o dejarlas sin tensión. Si esto no fuera posible, se colocarán barreras o avisos para que los vehículos y las instalaciones se mantengan alejados de las mismas. En caso de que vehículos de la obra tuvieran que circular bajo el tendido se utilizará una señalización de advertencia y una protección de delimitación de altura.

3.2. Protecciones personales

Como complemento de las protecciones colectivas será obligatorio el uso de las protecciones personales. Los mandos intermedios y el personal de seguridad vigilarán y controlarán la correcta utilización de estas prendas de protección.

Dado que la mayoría de los riesgos que obligan al uso de las protecciones personales son comunes a las actividades a realizar, relacionamos las prendas de protección previstas para el conjunto de los trabajos.

Se prevé el uso, en mayor o menor grado, de las siguientes protecciones personales:

- Casco.
- Pantalla facial transparente.
- Pantalla de soldador con visor abatible y cristal inactínico.
- Mascarillas faciales según necesidades.
- Mascarillas desechables de papel.
- Guantes de varios tipos (montador, soldador, aislante, goma, etc.)
- Cinturón de seguridad.
- Absorbedores de energía.
- Chaqueta, peto, manguitos y polainas de cuero.
- Gafas de varios tipos (contraimpactos, sopletero, etc.).
- Calzado de seguridad, adecuado a cada uno de los trabajos.
- Protecciones auditivas (cascos o tapones).
- Ropa de trabajo.

DE INGENIEROS TÉCNICOS INDUSTRIA DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

> Habilitación Profesional

2/5 2025

VISADO: 202501013
Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY]

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 21

Todas las protecciones personales cumplirán la Normativa Europea (CE) relativa a Equipos de Protección Individual (EPI).

3.3. Revisiones técnicas de seguridad

Su finalidad es comprobar la correcta aplicación del Plan de Seguridad. Para ello, el Contratista velará por la ejecución correcta de las medidas preventivas fijadas en dicho Plan.

Sin perjuicio de lo anterior, podrán realizarse visitas de inspección por técnicos asesores especialistas en seguridad.

Col. nº 06551 JULIAN GARCIA SANCHEZ

2025

Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY] VISADO: 202501013

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 22

4. INSTALACIONES ELÉCTRICAS PROVISIONALES

La acometida eléctrica general alimentará una serie de cuadros de distribución de los distintos contratistas, los cuales se colocarán estratégicamente para el suministro de corriente a sus correspondientes instalaciones, equipos y herramientas propias de los trabajos.

4.1. Riesgos previsibles

Los riesgos implícitos a estas instalaciones son los característicos de los trabajos y manipulación de elementos (cuadros, conductores, etc.) y herramientas eléctricas, que pueden producir accidentes por contactos tanto directos como indirectos.

4.2. Medidas preventivas

Las principales medidas preventivas a aplicar en instalaciones, elementos y equipos eléctricos serán las siguientes:

4.2.1. Cuadros de distribución

Serán estancos, permanecerán todas las partes bajo tensión inaccesibles al personal y estarán dotados de las siguientes protecciones:

- Interruptor general.
- Protecciones contra sobrecargas y cortocircuitos.
- Diferencial de 300 mA.
- Toma de tierra de resistencia máxima 20 ohmios.
- Diferencial de 30 mA para las tomas monofásicas que alimentan herramientas o útiles portátiles.
- Tendrán señalizaciones de peligro eléctrico.
- Solamente podrá manipular en ellos el electricista.
- Los conductores aislados utilizados tanto para acometidas como para instalaciones, serán de 1.000 voltios de tensión nominal como mínimo.

4.2.2. Prolongadores, clavijas, conexiones y cables

- Los prolongadores, clavijas y conexiones serán de tipo intemperie con tapas de seguridad en tomas de corriente hembras y de características tales que aseguren el aislamiento, incluso en el momento de conectar y desconectar.
- Los cables eléctricos serán del tipo intemperie sin presentar fisuras y de suficiente resistencia a esfuerzos mecánicos.

Col. nº 06551 JULIAN GARCIA SANCHEZ DLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTR DE ASTURIAS Habilitación Profesional

5 2025

Validar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY] VISADO: 202501013

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 23

- Los empalmes y aislamientos en cables se harán con manguitos y cintas aislantes vulcanizadas.
- Las zonas de paso se protegerán contra daños mecánicos.

4.2.3. Herramientas y útiles eléctricos portátiles

- Las lámparas eléctricas portátiles tendrán el mango aislante y un dispositivo protector de la lámpara de suficiente resistencia. En estructuras metálicas y otras zonas de alta conductividad eléctrica se utilizarán transformadores para tensiones de 24 V.
- Todas las herramientas, lámparas y útiles serán de doble aislamiento.
- Todas las herramientas, lámparas y útiles eléctricos portátiles, estarán protegidos por diferenciales de alta sensibilidad (30 mA).

4.2.4. Máquinas y equipos eléctricos

Además de estar protegidos por diferenciales de media sensibilidad (300 mA), irán conectados a una toma de tierra de 20 ohmios de resistencia máxima y llevarán incorporado a la manguera de alimentación el cable de tierra conectado al cuadro de distribución.

4.2.5. Normas de carácter general

- Bajo ningún concepto se dejarán elementos de tensión, como puntas de cables terminales, etc., sin aislar.
- Las operaciones que afecten a la instalación eléctrica, serán realizadas únicamente por el electricista.
- Cuando se realicen operaciones en cables, cuadros e instalaciones eléctricas, se harán sin tensión.

4.2.6. Revisión y mantenimiento de las instalaciones

Se realizará un adecuado mantenimiento y revisiones periódicas de las distintas instalaciones, equipos y herramientas eléctricas, para analizar y adoptar las medidas necesarias en función de los resultados de dichas revisiones.

4.2.7. Medidas de protección contra incendios

Cada contratista dispondrá en obra de extintores de polvo o gas en número suficiente para cubrir las necesidades de los riesgos de incendio que generen los trabajos que realiza, así como para la protección de sus instalaciones, oficinas, almacenes, vehículos, etc.

픰

Página 24

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

4.2.8. Revisiones periódicas

La persona designada al efecto por los distintos contratistas comprobará periódicamente el estado de los extintores y sustituirá los descargados o bajos de presión.

4.3. Almacenamiento y uso de gases

4.3.1. Almacenamiento

Las botellas de gases se almacenarán en un recinto acotado y exclusivo para ellas que cumplirá las siguientes condiciones:

- Se separará cada tipo de gas en compartimentos diferentes y, en cada caso, estará señalizado el contenido de las botellas.
- Se separarán las botellas llenas de las vacías.
- El recinto estará perfectamente ventilado, cubierto de los rayos del sol y en el acceso habrá algún extintor.

4.3.2. Uso de botellas en los tajos

El personal que maneje las botellas de gases o equipos de oxicorte estará adiestrado para estos trabajos y como mínimo cumplirá las siguientes normas básicas de Seguridad:

- La presión de trabajo del acetileno no será superior a dos atmósferas.
- Antes de encender el soplete por primera vez cada día, las mangueras se purgarán individualmente, así como al finalizar el trabajo.
- Verificar periódicamente el estado de las mangueras, juntas, etc., para detectar posibles fugas. Para ello se utilizará agua jabonosa, pero nunca llama.
- Se pondrán válvulas antirretroceso en las salidas de los manómetros y en las entradas del soplete.
- Durante el transporte o desplazamiento, las botellas incluso si están vacías, deben tener la válvula cerrada y la caperuza puesta.
- Está prohibido el arrastre, deslizamiento o rodadura de la botella en posición horizontal.
- No se colocarán, ni puntualmente, cerca de sustancias o líquidos fácilmente inflamables tales como aceite, gasolina, etc.
- Las botellas se mantendrán alejadas del punto de trabajo, lo suficiente para que no les lleguen las chispas o escorias, o bien se protegerán con mantas ignífugas.
- No se emplearán nunca los gases comprimidos para limpiar residuos, vestuarios, ni para ventilar personas.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

• Las botellas estarán siempre, en obra o acopio, en posición vertical y colocadas en carros portabotellas o amarradas a puntos fijos para evitar su caída.

4.4. Formación del personal

Su objetivo es informar a los trabajadores de los riesgos propios de los trabajos que van a realizar, darles a conocer las técnicas preventivas y mantener el espíritu de seguridad de todo el personal.

Para la enseñanza de las Técnicas de Prevención, además de los sistemas de divulgación escrita, como Folletos, normas, etc., ocuparán un lugar primordial las charlas específicas de riesgos y actividades concretas.

4.4.1. Charla de seguridad y primeros auxilios para personal de ingreso en la obra

Todo el personal, antes de comenzar sus trabajos, asistirá a una charla en la que se le informará de los riesgos generales de la obra, de las medidas previstas para evitarlos, de las Normas de Seguridad de obligado cumplimiento y de aspectos generales de Primeros Auxilios.

Al inicio de la semana los encargados de cada uno de los grupos de trabajo impartirán unas charlas de seguridad sobre los trabajos a realizar en este periodo y las normas de seguridad a seguir.

4.4.2. Charla sobre riesgos específicos

Dirigidas a los grupos de trabajadores sujetos a riesgos concretos en función de las actividades que desarrollen. Serán impartidas por los Mandos directos de los trabajos, o bien por Técnicos de Seguridad de cada una de las empresas que participan en la ejecución de la obra.

Si, sobre la marcha de los trabajos, se detectasen situaciones de especial riesgo en determinadas profesiones o fases de trabajo, se programarían Charlas Específicas, impartidas por el Técnico de Seguridad encaminadas a divulgar las medidas de protección necesarias en las actividades a que se refieran.

Entre los temas más importantes a desarrollar en estas charlas estarán los siguientes:

- Riesgos eléctricos.
- Trabajos en altura.
- Riesgos de soldadura eléctrica y oxicorte.
- Uso de máquinas, manejo de herramientas.
- Manejo de cargas de forma manual y con medios mecánicos.
- Empleo de andamios, plataformas, escaleras y líneas de vida.

DE INGENIEF

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

4.5. Reuniones de seguridad

Para que la política de mentalización, motivación y responsabilización de los mandos de obra en el campo de la prevención de accidentes sea realmente efectiva, son muy importantes las Reuniones de Seguridad en las que la Dirección de Obra, los Mandos responsables de la ejecución de los trabajos, los trabajadores y el personal de Seguridad analicen conjuntamente aspectos relacionados exclusivamente con la prevención de accidentes.

4.6. Medicina asistencial

Partiendo de la imposibilidad humana de conseguir el nivel de riesgo cero, es necesario prever las medidas que disminuyan las consecuencias de los accidentes que, inevitablemente puedan producirse. Esto se llevará a cabo a través de tres situaciones:

- Control médico de los empleados.
- La organización de medios de actuación rápida y primeros auxilios a accidentados.
- La medicina asistencial en caso de accidente o enfermedad profesional.

4.6.1. Control médico

Tal como establece la legislación Vigente, todos los trabajadores que intervengan en la construcción de las obras objeto de este Estudio, pasarán los reconocimientos médicos previstos en función del riesgo a que, por su oficio u ocupación, vayan a estar sometidos.

4.6.2. Medios de actuación y primeros auxilios

La primera asistencia médica a los posibles accidentados será realizada por los Servicios Médicos de la Mutua Laboral concertada por cada contratista o, cuando la gravedad o tipo de asistencia lo requiera por los Servicios de Urgencia de los Hospitales Públicos o Privados más próximos.

En la obra se dispondrá, en todo momento, de un vehículo para hacer una evacuación inmediata, de un medio de comunicación (teléfono) y de un Botiquín y, además, habrá personal con unos conocimientos básicos de Primeros Auxilios, con el fin de actuar en casos de urgente necesidad.

Así mismo se dispondrá, igualmente, en obra de una "nota" escrita, colocada en un lugar visible y de la que se informará y dará copia a todos los contratistas, que contendrá una relación con las direcciones y teléfonos de los Hospitales, ambulancias más cercanas, así como los médicos locales.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

PRIMEROS AUXILIOS Y ASISTENCIA SANITARIA				
NIVEL DE ASISTENCIA	NOMBRE Y UBICACION			
Primeros auxilios	Botiquín portátil en la obra			
Hospital	Hospital Clínico Universitario Lozano Blesa C. de San Juan Bosco, 15, 50009 Zaragoza. 976 76 57 00			
Mutua de Accidentes	La del adjudicatario de la Obra.			
PETICION DE AYUDA A PROTECCION CIVIL EN EL TELEFONO 112				

4.6.3. Medicina asistencial en incapacidades laborales transitorias o permanentes

El contratista acreditará que este servicio queda cubierto por la organización de la Mutua Laboral con la que debe tener contratada póliza de cobertura de incapacidad transitoria, permanente o muerte por accidente o enfermedad profesional.

4.7. Vestuarios y aseos

En la zona destinada a instalaciones de contratistas, éstos montarán casetas prefabricadas para aseos y vestuarios de su personal cumpliendo, en función del número de trabajadores que los utilicen en cada momento, las condiciones mínimas establecidas en el Capítulo III de la O.G.S.H.T., o bien usar, en su defecto y bajo las mismas condiciones las instalaciones definitivas. En cualquier caso, estas instalaciones se deberán mantener en unas adecuadas condiciones de limpieza e higiene.

5. PLIEGO DE CONDICIONES

5.1. Objeto

El objeto del siguiente Pliego de Condiciones es especificar las características y condiciones técnicas correspondientes a los medios de protección colectiva e individual previstos en la Memoria, así como las normas necesarias para su correcto mantenimiento, atendiendo a la Reglamentación Vigente.

No se especifican en este documento por estar claramente definidos en los diferentes artículos del RD 1627/1997, los aspectos relativos a las obligaciones del coordinador en materia de seguridad y de salud, a las obligaciones de los contratistas, subcontratistas y trabajadores autónomos y al uso del libro de incidencias. También son de aplicación fundamental los principios generales y disposiciones mínimas de seguridad y de salud que se recogen en el RD 1627/1997.

5.2. Disposiciones legales reglamentarias

Será de obligado cumplimiento, por parte de los contratistas, la normativa reseñada a continuación:

• Ley 31/1995, de 8 de Noviembre, de Prevención de Riesgos Laborales.

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

- Ordenanza General de Seguridad e Higiene en el Trabajo (O.M. de 9 de marzo de 1971), en los Capítulos y artículos no derogados por la Ley 31/95.
- Disposiciones mínimas de seguridad y salud en las obras de construcción (RD 1627/1997 de 24 de octubre)
- Reglamento de aparatos de elevación: grúas móviles autopropulsadas (RD 2370/1996, B.O.E.
- Disposiciones de seguridad y salud relativas a la manipulación manual de cargas (RD 487/1997, B.O.E. 23.4.97)
- Disposiciones de seguridad y salud en los lugares de trabajo (RD 486/1997 de 14 de abril, B.O.E. 23.4.97)
- Señalización de seguridad y salud en el trabajo (RD 485/1997, B.O.E. 23.4.97)
- Ordenanza general de seguridad e higiene en el trabajo (OM 9.3.1971, B.O.E. 16.3.71)
- Reglamento de prevención de riesgos laborales (RD 39/1997, B.O.E. 31.1.97)
- Normas armonizadas en aplicación de la Directiva 89/392 sobre máquinas
- Directiva 89/392 de máquinas (RD 56/1995, B.O.E. 8.2.95)
- Reglamento de líneas aéreas de alta tensión (OM 28.11.68)
- Ordenanza de trabajo de la construcción, vidrio y cerámica (seguridad y salud en el trabajo) (OM 28.9.1970, B.O.E. 17.10.70)
- Limitación de potencia acústica en maquinaria de obras (RD 459/89, B.O.E.11.3.89 y 1.12.89)
- Protección de los trabajadores frente al ruido (RD 1316/89)
- Real Decreto 1367/2007, de 19 de Octubre por el que se desarrolla la Ley 37/2003, de 17 de noviembre del ruido.
- Libro de incidencias en materia de seguridad (OM 20.9.86, B.O.E. 13.11.86)
- Ley General de la Seguridad Social (D.2065/74 de 30 de Mayo)
- Estatuto de los Trabajadores (Ley 8/80 de 1 de Marzo)
- Constitución, composición y funciones de los Comités de Seguridad y Salud Laboral (Ley 31/95).
- Ordenanza Laboral de la Construcción (O.M. 28.08.70)
- Ordenanza Laboral Industrias Siderometalúrgicas (O.M. 29.07.70)
- Reglamento Electrotécnico para Baja Tensión (D. 2413/73 de 20.9.73, y Ordenes Complementarias).
- Reglamento de Actividades Molestas, Insalubres y Peligrosas (D. 2414/61 de 22 de Diciembre).
- Reglamento de Explosivos (R.D. 2114/78, B.O.E. 07.09.78).

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

- Reglamento de aparatos Elevadores para Obras (O.M. de 23 de Mayo de 1977, y Ordenes Complementarias).
- Reglamento de Seguridad en las Máquinas (R.D. 1495/86 de 26 de Mayo)
- Reglamento de Aparatos a Presión (R.D. 1244/79 de 4 de Abril).
- Almacenamiento de Productos Químicos (R.D. 668/80 de 8 de Febrero).
- Instrucción Técnica Reglamentaria sobre extintores de incendios (O.M. de 31 de Mayo de 1982).
- Normas sobre señalización (R.D. 1403/86 de 9 de Mayo).
- Notificación de accidentes de trabajo (O.M. de 16 de Diciembre de 1987).
- Normas Técnicas Reglamentarias para la Homologación de Equipos de Protección Individual E.P.I (R.D. 1407/92 de 20 de Noviembre y modificaciones posteriores).
- Homologación de medios de protección personal de los trabajadores (OM 17.5.94, B.O.E. 29.5.74)
- Convenios Colectivos Provinciales de la Construcción.

Serán también de obligado cumplimiento cualquiera otra disposición oficial, relativa a la Seguridad y Salud Laboral, que entre en vigor durante la ejecución de la obra y que pueda afectar a los trabajos en la misma.

5.3. Protecciones personales

Todos los Equipos de Protección Individual (EPI) cumplirán lo establecido en el R.D. 1407/92 de 20 de noviembre, y modificaciones posteriores, por el que se adoptan en España los criterios de la Normativa Europea (Directiva 89/656/CE).

Dispondrán del consiguiente certificado y contendrá de forma visible el sello (CE) correspondiente.

5.4. Protecciones colectivas

Consideramos como Protecciones Colectivas las siguientes:

- Andamios.
- Redes (según Norma UNE 81-650-80).
- Mamparas.
- Protecciones de la instalación eléctrica.
- Medios de protección contra incendios.
- Señalización.
- Barandillas.

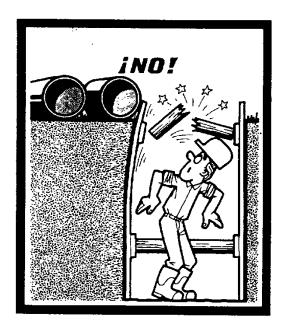
novotec

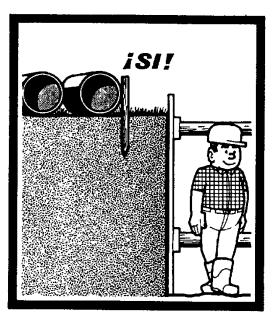
Página 30

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

- Plataformas.
- Líneas o cuerdas de vida, etc.

Algunas de éstas han sido ya descritas en la Memoria y otras son parte integrante de los propios equipos, medios o estructuras, por lo que omitiremos extendernos en sus características.


Por otra parte, los elementos y características de seguridad más significativos de los medios de protección colectiva que se prevé utilizar están descritos en los planos y dibujos que se adjuntan en el apartado 4 (PLANOS) del presente Estudio.


5.5. Revisiones técnicas de seguridad

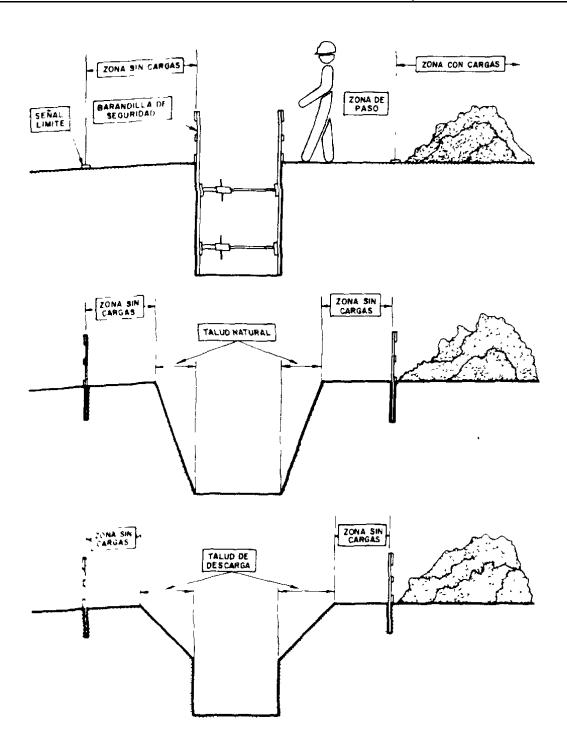
Tal como hemos indicado a lo largo del presente Estudio, se realizarán, con cierta periodicidad, las revisiones necesarias a los equipos, herramientas y medios auxiliares, con el fin de mantenerlos en perfectas condiciones de uso.

PLANOS

EXCAVACIÓN. APERTURA DE ZANJAS

Se debe reservar un espacio suficiente entre el borde de la zanja y los materiales.

Col. nº 06551 JULIAN GARCIA SANCHEZ EGIO OFICIAL DE INGENIER


2025

novotec

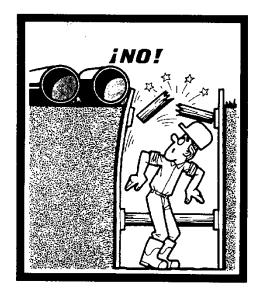
PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 31


Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional 2/5 2025

novotec


PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

novotec

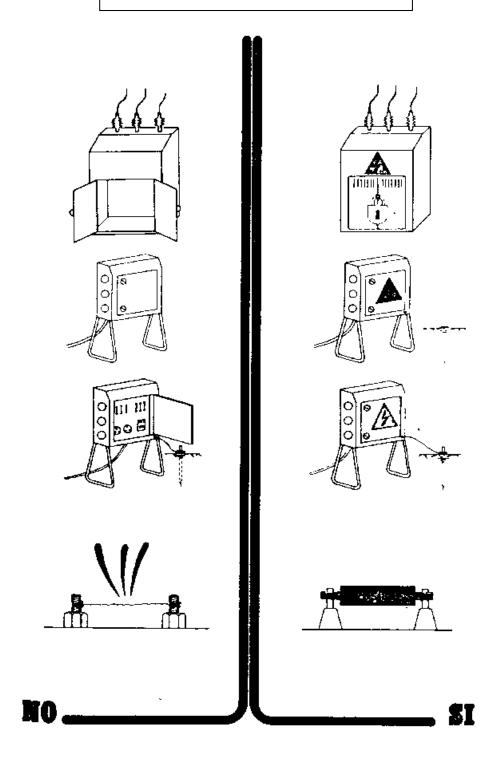
PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 33

Se debe reservar un espacio suficiente entre el borde de la zanja y los materiales.

Las zanjas deben entibarse.

2/5 2025


novotec

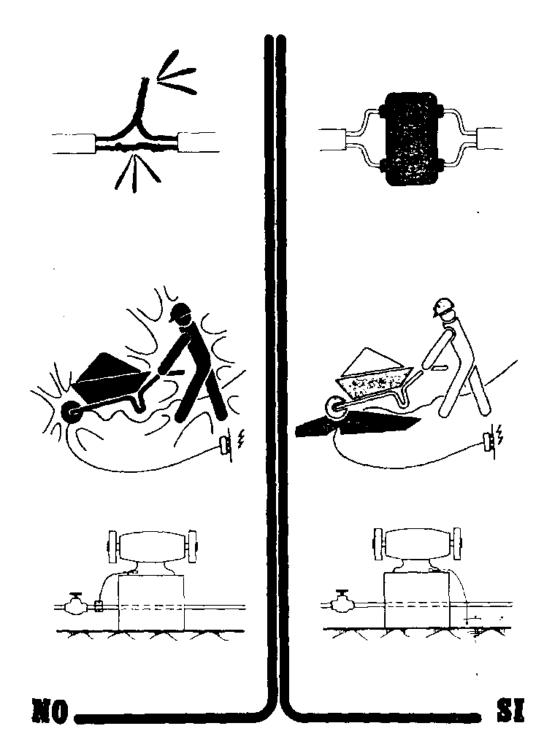
PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 34

INSTALACIÓN ELÉCTRICA PROVISIONAL DE OBRA

Profundidad de la zanja superior a 1,5 metros.

COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADO DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

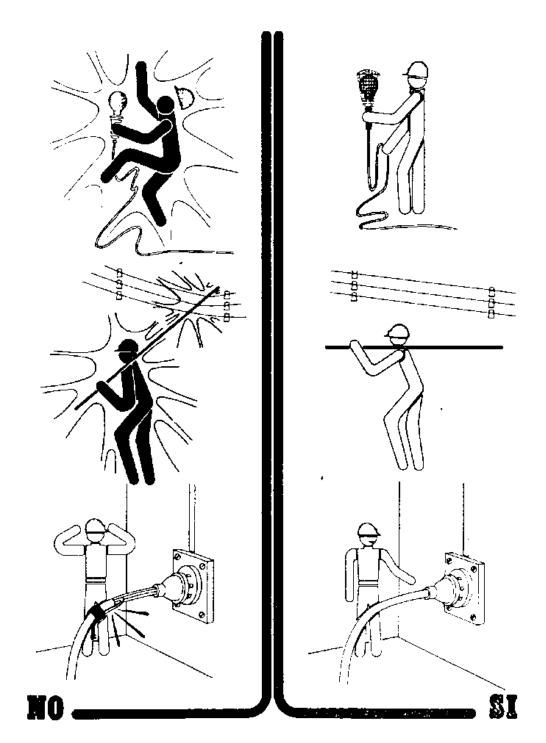

Habilitación Profesional 2/5 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 35

COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADO DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

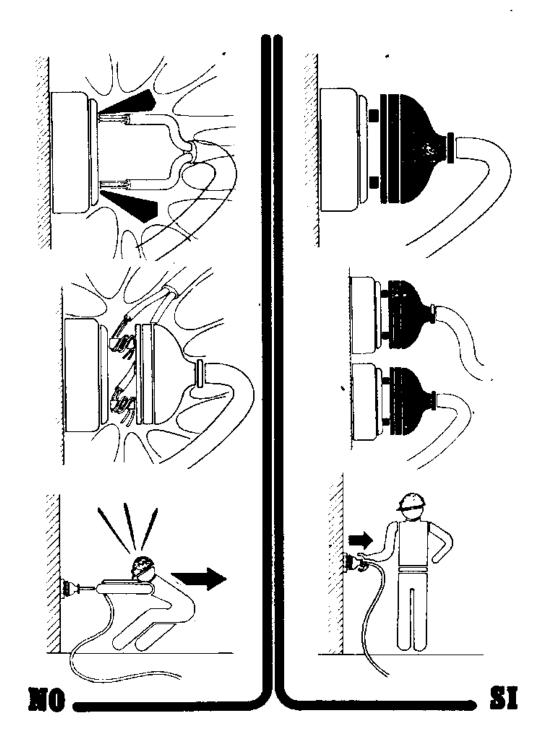

2/5 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 36

Col. nº 06551 JULIAN GARCIA SANCHEZ


2/5 2025

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

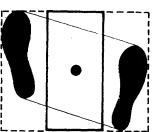
Página 37

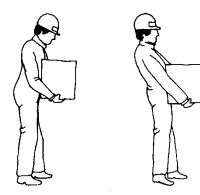
Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional

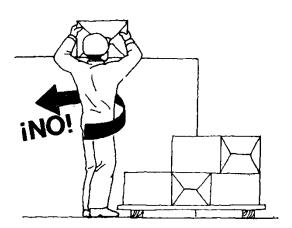
2/5 2025

novotec


PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

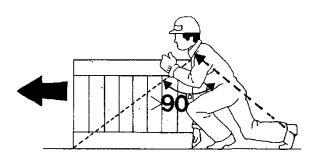

Página 38

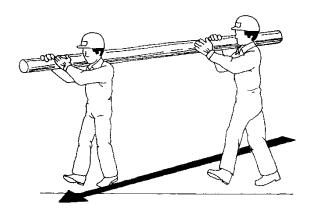
MANIPULACIÓN MANUAL DE CARGAS



iNO!

iSi!

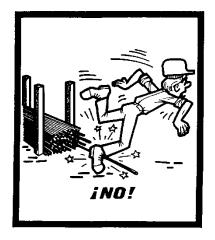




novotec

Página 39

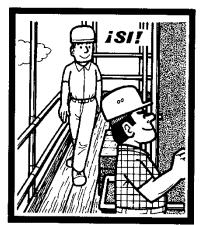
PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV



novotec

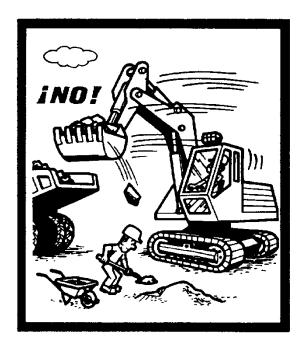
PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 40


ORDEN Y LIMPIEZA

Almacenar los materiales correctamente para evitar todos los riesgos de accidentes debidos al paso de los trabajadores.

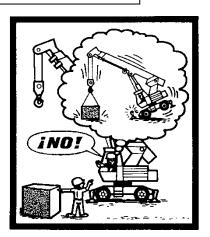
Mantener los puestos de trabajo en orden, los materiales ordenados, la circulación despejada, así se evitarán los resbalones y las caídas.



MAQUINARIA DE OBRA


novotec

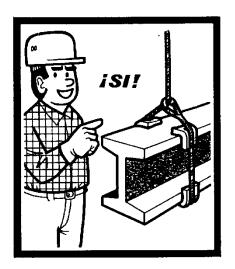
PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV


Página 41

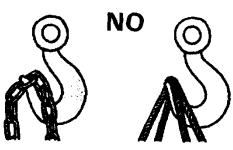
Permanecer fuera del radio de acción de la maquinaria de obra

Está formalmente prohibido transportar a personas por medio de los montacargas, grúas y demás aparatos destinados únicamente al transporte de cargas.

No sobrepasar la carga máxima de utilización, que debe estar bien visible, para los montacargas, grúas y demás aparatos de elevación.

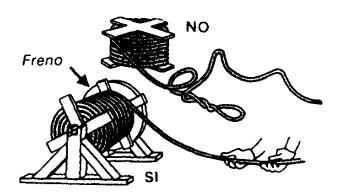


novotec

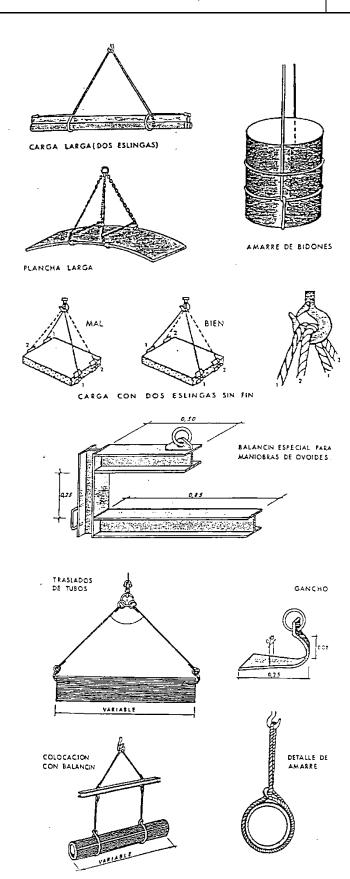

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 42

ELEMENTOS DE IZADO



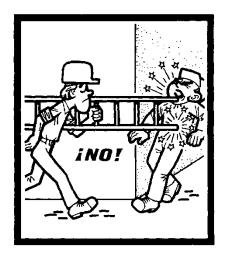
Aislar de las aristas vivas las eslingas, cadenas y cuerdas.



Esfuerzos soportados por asiento del gancho con pestillo de seguridad

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

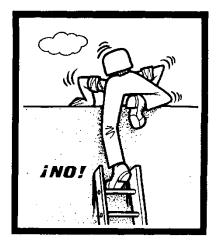




novotec

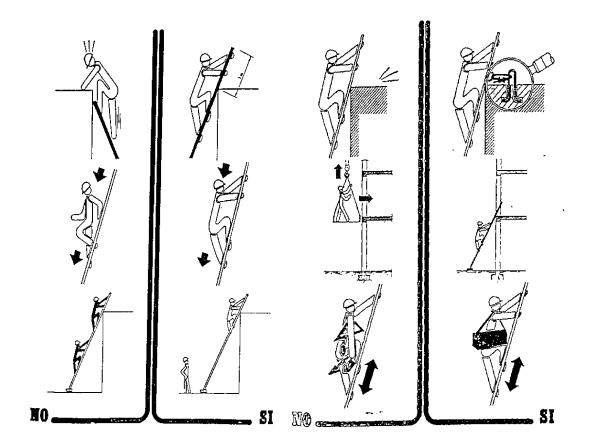
PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

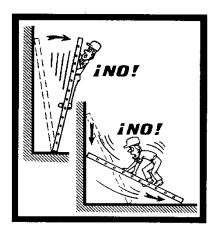
Página 44



Instalar las escaleras sobre un suelo estable, contra una superficie sólida y fija, y de forma que no puedan resbalar, ni bascular.

Hacer traspasar las escaleras por lo menos un metro por encima del piso de trabajo al que dan paso.




novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 45

Vigilar que la separación del pié de escalera, de la superficie de apoyo, sea la correcta.

OLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADO DE ASTURIAS Col. nº 06551 JULIAN GARCIA SANCHEZ

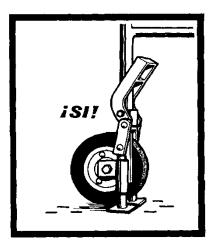
2/5 2025


novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 46

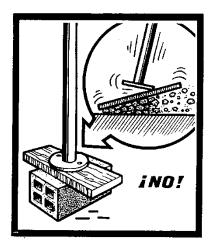
ANDAMIOS

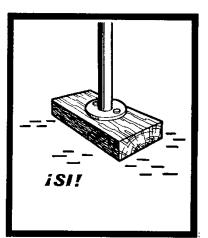


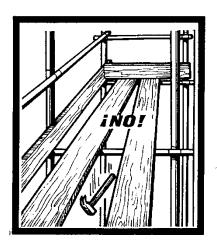
Los andamios rodantes sólo deben ser desplazados lentamente, prefiriendo el sentido longitudinal, sobre suelos bien despejados.

Nadie debe encontrarse en el andamio durante los desplazamientos.

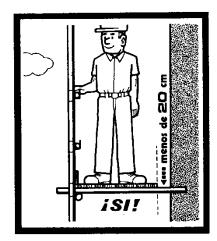
Antes de cualquier desplazamiento, asegurarse de que no pueda caer ningún objeto.

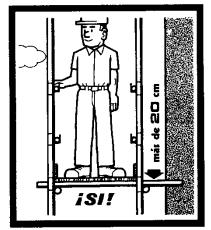


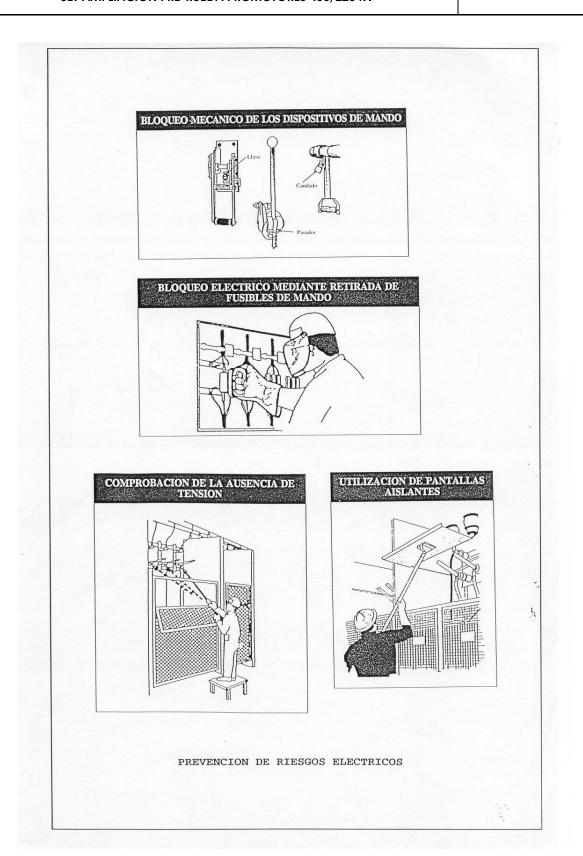

Antes de subir a un andamio rodante, bloquear las ruedas y si es necesario colocar los estabilizadores.



novotec


PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV





novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

novotec


PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 51

7. MEDICIONES Y PRESUPUESTO ECONÓMICO

7.1. Objeto

El objeto de este documento es valorar los gastos asignados según previsiones de desarrollo de este Estudio de Seguridad y Salud Laboral.

En relación a este capítulo se incluyen y valoran:

- Las protecciones personales
- Las protecciones colectivas no integradas en máquinas e instalaciones (no se incluyen los andamios, plataformas, escaleras, protecciones mecánicas o eléctricas de máquinas y cuadros, etc, por considerarlas elementos integrantes de los medios de producción).
- La Medicina Preventiva y Primeros Auxilios previstos para los trabajadores.
- Las horas de personal dedicadas a formación, vigilancia y reuniones de seguridad.
- Los costos, incluyendo limpieza y mantenimiento, de las instalaciones de Higiene y Bienestar.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 52

7.2. Presupuesto parcial

7.2.1. Capítulo 1: protecciones individuales

CAPÍT	CAPÍTULO 1: PROTECCIONES INDIVIDUALES				
Ud	Denominación	Ud	€/Ud	Total (€)	
Ud.	Casco de seguridad homologado	15	3,61	54,15	
Ud.	Gafa antipolvo y anti-impactos	15	5,41	81,15	
Ud.	Mascarilla antipolvo	15	10,09	151,35	
Ud.	Filtro para mascarilla antipolvo	30	0,43	12,90	
Ud.	Protector auditivo	15	12,26	183,90	
Ud.	Cinturón de seguridad	6	19,84	119,04	
Ud.	Cinturón antivibratorio	6	17,30	103,80	
Ud.	Mono o buzo de trabajo	15	13,70	205,50	
Ud.	Impermeable	15	12,98	194,70	
Ud.	Guantes dieléctricos	8	25,25	202,00	
Ud.	Guantes de goma finos	15	1,80	27,00	
Ud.	Guantes de cuero	6	2,52	15,12	
Ud.	Botas impermeables al agua y a la humedad	8	9,37	74,96	
Ud.	Botas de seguridad de Iona	15	20,20	303,00	
Ud.	Botas de seguridad de cuero	2	23,08	46,16	
Ud.	Botas dieléctricas	2	28,85	57,70	
Ud.	Chaleco reflectante	15	18,04	270,60	
Ud.	Muñequera	2	2,88	5,76	
Ud.	Casco para AT homologado	6	2,82	16,92	
Ud.	Pértiga para AT	1	86,30	86,30	
Ud.	Banqueta aislante de maniobra exterior AT	1	103,62	103,62	
Ud.	Cinturón de seguridad para caídas homol.	3	135,00	405,00	
Ud.	Aparato de freno de paracaídas, homolog.	3	73,78	221,34	
Ud.	Cubierta de poliamida para freno de parac.	3	6,30	18,90	
Ud.	Amarre regulable (1.10-1.80m), argolla revestida de P.V.C., homologado	3	17,92	53,76	
Ud.	Dispositivo anticaída	3	96,40	289,20	
TOTAL	PROTECCIONES INDIVIDUALES			3.303,83 €	

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 53

7.2.2. Capítulo 2: protecciones colectivas

CAPÍI	CAPÍTULO 2: PROTECCIONES COLECTIVAS					
Ud	Denominación	Ud	€/Ud	Total (€)		
Ud.	Cartel indicativo de riesgo con soporte metálico, incluida la colocación	1	28,98	28,98		
m	Cordón de balizamiento reflectante, incluidos soportes, colocación y desmontaje	38	0,47	17,86		
m	Cinta plástica de balizamiento en colores blanco y rojo	38	0,47	17,86		
Ud.	Valla autónoma metálica de contención peatones	2	9,52	19,04		
Ud.	Jalón de señalización, incluida la colocación	4	1,08	4,32		
h	Camión de riego, incluido el conductor	2	17,66	35,32		
h	Mano de obra de señalización	3	7,81	23,43		
h	Mano de obra de brigada de seguridad empleada en mantenimiento y reposición de protecciones	2	14,42	28,84		
Ud.	Teléfono móvil disponible en obra, incluida conexión y utilización	1	901,52	901,52		
Ud.	Extintor de polvo polivalente, incluido el soporte	2	75,18	150,36		
Ud.	Aparato de doble comunicación para organizar el tráfico	1	399,18	399,18		
Ud.	Instalación de puesta a tierra, compuesta por cable de cobre, electrodo conectado a tierra en masas metálicas, etc.	1	41,06	41,06		
Ud.	Interruptor diferencial de media sensibilidad (300mA)	2	25,45	50,90		
Ud.	Interruptor diferencial de alta sensibilidad (30mA)	2	30,40	60,80		
TOTAL	PROTECCIONES COLECTIVAS			1.779,47 €		

7.2.3. Capítulo 3: prevención y primeros auxilios

CAPÍT	CAPÍTULO 3: PREVENCIÓN Y PRIMEROS AUXILIOS					
Ud	Denominación	Ud € / Ud Total (€)				
Ud.	Botiquín de obra instalado	2	25,66	51,32		
Ud.	Reposición de material de botiquín de obra	4	30,47	121,88		
Ud.	Reconocimiento médico obligatorio	15	51,78	776,70		
TOTAL PREVENCIÓN Y PRIMEROS AUXILIOS			949,90 €			

Col. nº 06551 JULIAN GARCIA SANCHEZ

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 54

7.2.4. Capítulo 4: instalaciones de higiene y bienestar.

CAPÍT	CAPÍTULO 4: INSTALACIONES DE HIGIENE Y BIENESTAR					
Ud	Denominación	Ud	€/Ud	Total (€)		
Ud.	Mes de alquiler de caseta prefabricada para usos varios de obra de 6x2.35m, incluida instalación de fuerza y alumbrado	2	108,00	216,00		
Ud.	Mes de alquiler de caseta prefabricada para vestuarios de obra de 6x2.35m, incluida instalación de fuerza y alumbrado	2	108,00	216,00		
Ud.	Mes de alquiler de caseta prefabricada para comedor de obra de 3.25x1.90m, incluida instalación de fuerza y alumbrado, material sanitario y termo agua caliente	2	108,00	216,00		
Ud.	Acometida provisional de electricidad a casetas de obra	2	30,41	60,82		
Ud.	Acometida provisional de fontanería a casetas de obra	1	36,25	36,25		
Ud.	Acometida provisional de saneamiento a casetas de obra	1	42,58	42,58		
Ud.	Pileta corrida construida en obra y dotada de tres grifos	1	30,47	30,47		
Ud.	Mesa metálica para comedor, capacidad 10 personas, colocada	1	24,23	24,23		
Ud.	Banco de polipropileno para cinco personas con soportes metálicos	2	22,42	44,84		
Ud.	Calienta comidas para 50 servicios	1	47,46	47,46		
Ud.	Depósito de basuras de 8001	2	6,66	13,32		
Ud.	Equipo de limpieza y conservación de las instalaciones	30	25,38	761,40		
Ud.	Taquilla metálica individual con llave	15	9,92	148,80		
TOTAL	INSTALACIONES DE HIGIENE Y BIENESTAR			1.858,17 €		

7.2.5. Capítulo 5: Formación y reuniones

CAPÍ	CAPÍTULO 5: FORMACIÓN Y REUNIONES							
Ud	Denominación U		Denominación		Denominación		€ / Ud	Total (€)
h	Formación de seguridad e higiene en el trabajo, considerando una hora a la semana realizado por un encargo	18	4,07	73,26				
h	Comité de seguridad	2	27,91	55,82				
h	Horas reuniones de Seguridad	11	15,93	175,23				
h	Meses de control y asesoramiento de Seguridad (Visitas Técn. Seguridad)	3	318,54	955,62				
TOTAL FORMACIÓN Y REUNIONES		1.259,93 €						

Col. nº 06551 JULIAN GARCIA SANCHEZ

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 55

8. PRESUPUESTO GENERAL

TOTAL SEGURIDAD Y SALUD	9.151,30 €
CAPÍTULO 5: FORMACIÓN Y REUNIONES	1.259,93 €
CAPITULO 4: INSTALACIONES DE HIGIENE Y BIENESTAR	1.858,17 €
CAPÍTULO 3: PREVENCIÓN Y PRIMEROS AUXILIOS	949,90€
CAPITULO 2: PROTECCIONES COLECTIVAS	1.779,47 €
CAPITULO 1: PROTECCIONES INDIVIDUALES	3.303,83 €

Asciende el presente presupuesto a la cantidad de:

NUEVE MIL CIENTO CINCUENTA Y UN EUROS CON TREINTA CÉNTIMOS (9.151,30 €).

COLEGIO OFICIAL DE INGENIEROS TÉCNICOS INDUSTRIALES DEL PRINCIPADA
DE ASTURIAS Habilitación co. nº 06551 JULIAN GARCIA SANCHEZ Profesional

2/5 2025

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Documento 05: Pliego de Condiciones Técnicas Enero 2025

DOCUMENTO 05: PLIEGO DE CONDICIONES TÉCNICAS

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 1

ÍNDICE

1.	OBJ	ETO		3	IPADO 認識	
2.	ABR	EVIATURA	S Y SIMBOLOGÍA	3	PRINC	
3.	NOI	RMAS Y RI	EGLAMENTOS GENERALES APLICABLES	3	ES DEL	
3	.1.		MIENTO Y MONTAJE		STRIAL	CHEZ
3	.2.	OBRA CI	VIL	.5	S INDU AS	CIA SAN
	3.2.	1 FSTR	PLICTUR	5	STL	n° 06551 JULIAN GARCIA SANCHEZ
	3.	.2.1.1.	ACCIONES EN LA EDIFICACIÓN	.5	IEROS 1	51 JULI/
	3.	.2.1.2.	ACCIONES EN LA EDIFICACIÓN	.5	INGEN	I. nº 065
	3.	.2.1.3.	FÁBRICA DE LADRILLO	.5	CIAL DE	on al _{Col.}
	3.	.2.1.4.	HORMIGÓN	- 1	OF	Habilitación Profesional
	3	.2.1.5.	FORJADOS	- 11	ш -	
	3.2.		ALACIONES		2/ 20	/5 25
		.2.2.1.	CALEFACCIÓN Y CLIMATIZACIÓN			
		.2.2.1.	ELECTRICIDAD			<u>-</u>
		.2.2.3.	INSTALACIONES DE PROTECCIÓN CONTRA INCENDIOS			'alidar cogitipa.e-gestion.es [FVXZGYAPYMYMPAJY]
					 	YAPYN
	3.2.3)TECCIÓN			[FVXZG
	3.	.2.3.1.	AISLAMIENTO ACÚSTICO		01013	ion.es
	3.	.2.3.2.	AISLAMIENTO TÉRMICO	.6	2025(i.e-gest
	3.	.2.3.3.	PROTECCIÓN CONTRA INCENDIOS	.6	VISADO: 202501013	cogitipa
3	.3.	VARIOS.		.6	VISA	Validar
4.	DISF	POSICION	ES GENERALES	7	1	B *
4	.1.	SEGURID	AD EN EL TRABAJO	.7	*** - 	-
4	.2.	GESTIÓN	AMBIENTAL	.8		
4	.3.	CÓDIGO	ds y normas	.8	ļ	
4	.4.	CONDIC	IONES PARA LA EJECUCIÓN DE LAS OBRAS	.8	ļ	
5.	CRI	TERIOS DE	DISEÑO	8	ļ	
5	.1.	GENERA	LIDADES E HIPÓTESIS DE DISEÑO	.8		

DOCUMENTO 05: PLIEGO DE CONDICIONES TÉCNICAS

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 2

5.1.1. CC	UNDICIONES AMBIENTALES	8	
5.1.2. DA	ATOS DE CORTOCIRCUITO	8	
5.1.3. MA	AGNITUDES ELÉCTRICAS Y DISTANCIAS	9	<u> </u>
5.2. DESCRI	AGNITUDES ELÉCTRICAS Y DISTANCIAS	Y	INCIPAL BRANK
MONTAJE		9	EL PR
5.2.1. LA	NZAMIENTO DE OBRA. REUNIÓN DE LANZAMIENTO ANIFICACIÓN DE LOS TRABAJOS. PROGRAMA DE OBRA	9	IALES D
5.2.2. PL	ANIFICACIÓN DE LOS TRABAJOS. PROGRAMA DE OBRA	10	IDUSTR
5.2.3. AC	CTIVIDADES DE OBRA CIVIL Y MONTAJE ELECTROMECÁNICO	.11	COS II
5.2.3.1.	RECEPCIÓN DE EQUIPOS Y MATERIALES EN OBRA	.11	OS TÉCN DE AST
5.2.3.2.	SUPERVISION DE OBRA CIVIL Y MONTAJE ELECTROMECANICO	.12	Ä
5.2.3.3.	CONTROL POR EL TÉCNICO RESPONSABLE DE CONSTRUCCIÓN.	.13	DE IN
5.2.3.4.	RESOLUCIÓN DE ANOMALÍAS DURANTE LA CONSTRUCCIÓN	.13	OFICIAL
5.2.3.5.	IDENTIFICACIÓN Y TRAZABILIDAD	13	OLEGIO
5.2.3.6.	MANIPULACIÓN, ALMACENAMIENTO Y CONSERVACIÓN	13	_
5.2.3.7.	MANTENIMIENTO DE ÚTILES Y HERRAMIENTAS	14	20
5.2.4. GE	estión de residuos	14	
5.2.5. PR	UEBAS EN LA INSTALACIÓN	14	
5.2.5.1.	PRUEBAS EN VACÍO	14	
5.2.5.2.	PRUEBAS EN TENSIÓN	14	
5.2.5.3.	FINALIZACIÓN DE LA OBRA	15	02501013
5.2.5.4.	CONTROL DE LA DOCUMENTACIÓN	.15	.0250

Col. nº 06551 JULIAN GARCIA SANCHEZ

Habilitación Profesional

2/5 2025

DOCUMENTO 05: PLIEGO DE CONDICIONES TÉCNICAS

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 3

1. OBJETO

El objeto del presente Pliego de condiciones es establecer los requisitos a los que se debe ajustar la ejecución de las obras del proyecto, así como las condiciones técnicas y control de calidad que han de cumplir los materiales utilizados en el mismo.

Las condiciones técnicas y operaciones a realizar que se indican no tienen carácter limitativo, teniendo que efectuar, además de las indicadas, todas las necesarias para la ejecución correcta del trabajo.

2. ABREVIATURAS Y SIMBOLOGÍA

PGCT	Pliego General de Condiciones Técnicas de Obra Civil
MIE	Ministerio de Industria y Energía
IEC	Internacional Electrotechnical Commission
UNE	Una Norma Española
MOPT	Ministerio de Obras Públicas y Transportes
NTE	Normas Tecnológicas de la Edificación
NLT	Normas de Ensayo del Laboratorio del Transporte y mecánica del suelo
NBE	Normas Básicas de Edificación
MAT	Muy Alta Tensión
AT	Alta Tensión
MT	Media Tensión
ВТ	Baja Tensión
ET	Especificación/es Técnica/s
IT	Instrucción/es Técnica/s
EHE	Instrucción de Hormigón Estructural
BOE	Boletín Oficial del Estado
PG3	Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes

3. NORMAS Y REGLAMENTOS GENERALES APLICABLES

Se aplicarán por el orden en que se relacionan, cuando no existan contradicciones legales, las siguientes normas:

- Normativa Europea EN.
- Normativa CENELEC.
- Normativa CEI.
- Normativa UNE.
- Otras normas y recomendaciones (IEEE, MF, ACI, CIGRE, ANSI, AISC, etc).

DOCUMENTO 05: PLIEGO DE CONDICIONES TÉCNICAS

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 4

3.1. Equipamiento y montaje

El presente Proyecto ha sido redactado basándose en los anteriores Reglamentos y Normas, y más concretamente, en los siguientes, que serán de obligado cumplimiento:

- Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-RAT 01 a 23. R.D. 337/2014, 9 de mayo, B.O.E.: 09/06/14. En especial las ITC siguientes:
 - ITC-RAT-09: "PROTECCIONES".
 - ITC-RAT-12: "AISLAMIENTO".
 - ITC-RAT-13: "INSTALACION DE PUESTA A TIERRA".
 - ITC-RAT-15: "INSTALACIONES ELECTRICAS DE EXTERIOR".
- Reglamento de Líneas Eléctricas Aéreas de Alta Tensión e instrucciones técnicas complementarias, Real Decreto 223/2008, de 15 de febrero, B. O. E.: 19/03/08.
- Reglamento Electrotécnico para Baja Tensión, "REBT", Real Decreto 842/2002, de 2 de agosto, del Ministerio de Ciencia y Tecnología B.O.E.: 18/09/02, e Instrucciones Técnicas Complementarias y sus modificaciones posteriores.
- Recomendaciones de la Unión Internacional de Telecomunicaciones (UIT-T) que le afecten Ley 31/95 de 8 de noviembre de Prevención de Riesgos Laborales.
- Real Decreto 614/01 de 8 de junio sobre Disposiciones mínimas de Seguridad y Salud de los trabajadores frente al riesgo eléctrico.
- Real Decreto 1215/97 de 18 de julio sobre EQUIPOS DE TRABAJO.
- Real Decreto 486/97 de 14 de abril sobre Disposiciones mínimas de Seguridad y Salud en los lugares de trabajo.
- Real Decreto 487/97 de 14 de abril sobre Manipulación manual de cargas.
- Real Decreto 773/97 de 30 de mayo sobre Utilización por los trabajadores de equipos de protección individual.
- Ley 32/2006 de 18 de octubre Reguladora de la subcontratación en el sector de la construcción.
- Prescripciones de seguridad para trabajos y maniobras en Instalaciones Eléctricas, de la Comisión
 Técnica Permanente de la Asociación de Medicina y Seguridad en el Trabajo de UNESA.
- Reglamento de Instalaciones de Protección contra Incendios, Real Decreto 513/2017, de 22 de mayo, del Ministerio de Economía, Industria y Competitividad B.O.E.: 12/06/2017.
- Normas Básicas de la edificación "NBE", del Ministerio de Obras Públicas y Urbanismo.
- Normas Tecnológicas de la Edificación (NTE) tanto en cuanto a la ejecución de los trabajos, como

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 5

en lo relativo a mediciones.

Instrucciones técnicas de los fabricantes y suministradores de equipos.

En el caso de discrepancias entre las diversas normas se seguirá siempre el criterio más restrictivo.

3.2. Obra civil

3.2.1. Estructuras

3.2.1.1. Acciones en la edificación

- Documento Básico de Seguridad Estructural SE-AE "Acciones en la Edificación" del Código Técnico de la Edificación. Real Decreto 314/2006, de 17 de marzo, del Ministerio de la Vivienda.
- Norma de construcción sismorresistente: parte general y edificación (NCSR-02). Real Decreto 997/2002, de 27 de septiembre, del Ministerio de Fomento B. O. E.: 11/10/02., por el que se aprueba la Norma de Construcción Sismorresistente: Parte General y Edificación (NCSR-02).

3.2.1.2. Acero

Documento Básico de Seguridad Estructural SE-A "Acero" del Código Técnico de la Edificación. Real Decreto 314/2006 de 17 de marzo, del Ministerio de la Vivienda.

3.2.1.3. Fábrica de ladrillo

Documento Básico de Seguridad Estructural SE-F "Fábrica" del Código Técnico de la Edificación. Real Decreto 314/2006 de 17 de marzo, del Ministerio de la Vivienda.

3.2.1.4. Hormigón

Instrucción de Hormigón Estructural "EHE-08". Real Decreto 1247/2008,18 de julio, del Ministerio de la Presidencia B.O.E.: 22/08/08.

3.2.1.5. Forjados

- Actualización de las fichas de autorización de uso de sistemas de forjados. Resolución de 30 de enero de 1997, del Ministerio de Fomento, B. O. E.: 06/03/97.
- Real Decreto 642/2002 de 5 de julio, por el que se aprueba la "Instrucción para el proyecto y la ejecución de forjados unidireccionales de hormigón estructural realizados con elementos prefabricados (EFHE)"

DLEGIO OFICIAL DE INGEN

PROYECTO DE EJECUCIÓN

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 6

3.2.2. Instalaciones

3.2.2.1. Calefacción y Climatización

- Documento Básico de Salubridad HS "Salubridad" del Código Técnico de la Edificación. Real Decreto 314/2006 de 17 de marzo, del Ministerio de la Vivienda.
- Reglamento de Instalaciones Térmicas en los Edificios (RITE) y sus Instrucciones Técnicas Complementarias (ITE) y se crea la Comisión Asesora para Instalaciones Térmicas de los Edificios. Real Decreto 1027/2007 de 20 de julio, Ministerio de la Presidencia B.O.E.: 29/08/07.

3.2.2.2. Electricidad

Reglamento electrotécnico para baja tensión "REBT" e instrucciones técnicas complementarias (ITC) BT01 a BT51. Real Decreto 842/2002, de 2 de agosto, del Ministerio de Industria y Energía B.O.E.: 18/09/02.

3.2.2.3. Instalaciones de Protección Contra Incendios

- Reglamento de Instalaciones de Protección contra Incendios, Real Decreto 513/2017, de 22 de mayo, del Ministerio de Economía, Industria y Competitividad B.O.E.: 12/06/2017.
- Documento Básico SI "Seguridad en caso de Incendio" del Código Técnico de la Edificación. Real Decreto 314/2006 de 17 de marzo, del Ministerio de la Vivienda.

3.2.3. Protección

3.2.3.1. Aislamiento acústico

Norma Básica de la edificación "NBE-CA-88" condiciones acústicas de los edificios. Orden de 29/09/88, del Ministerio de Obras Públicas y Urbanismo, B. O. E.: 8/10/88.

3.2.3.2. Aislamiento térmico

Documento Básico HE "Ahorro de energía" del Código Técnico de la Edificación. Real Decreto 314/2006 de 17 de marzo, del Ministerio de la Vivienda.

3.2.3.3. Protección contra incendios

Documento Básico SI "Seguridad en caso de incendio" del Código Técnico de la Edificación. Real Decreto 314/2006 de 17 de marzo, del Ministerio de la Vivienda.

3.3. Varios

Código Técnico de la Edificación. Real Decreto 314/2006 de 17 de marzo, del Ministerio de la Vivienda.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 7

- Normas tecnológicas de la edificación. Decreto del Ministerio de la Vivienda Nº 3565/72, de 23 de diciembre, B. O. E. 15/01/73.
- Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-RAT 01 a 23. R.D. 337/2014, 9 de mayo, B.O.E.: 09/06/14
- Instrucciones Técnicas Complementarias en Subestaciones. Real Decreto n º 842/02 de 2 de agosto, B.O.E.: 18/09/02.
- Recomendaciones de la Unión Internacional de Telecomunicaciones (UIT-T) que le afecten.
- Ley 31/95 de 8 de noviembre de Prevención de Riesgos Laborales.
- Real Decreto 614/01 de 8 de junio sobre Disposiciones mínimas de Seguridad y Salud de los trabajadores frente al riesgo eléctrico.
- Real Decreto 1215/97 de 18 de julio sobre EQUIPOS DE TRABAJO.
- Real Decreto 486/97 de 14 de abril sobre Disposiciones mínimas de Seguridad y Salud en los lugares de trabajo.
- Real Decreto 487/97 de 14 de abril sobre Manipulación manual de cargas.
- Real Decreto 773/97 de 30 de mayo sobre Utilización por los trabajadores de equipos de protección individual.
- Ley 32/2006 de 18 de octubre Reguladora de la subcontratación en el sector de la construcción.
- Prescripciones de seguridad para trabajos y maniobras en Instalaciones Eléctricas, de la Comisión Técnica Permanente de la Asociación de Medicina y Seguridad en el Trabajo de UNESA.
- Normas Tecnológicas de la Edificación (NTE) tanto en cuanto a la ejecución de los trabajos, como en lo relativo a mediciones.
- Instrucciones técnicas de los fabricantes y suministradores de equipos.
- En el caso de discrepancias entre las diversas normas se seguirá siempre el criterio más restrictivo.

DISPOSICIONES GENERALES

4.1. Seguridad en el trabajo

Conforme a lo dispuesto en el Real Decreto 1627/1997, de 24 de Octubre, por el que se establecen disposiciones mínimas de seguridad y salud en obras de construcción, al amparo de la Ley 31/1995, de 8 de Noviembre, de Prevención de Riesgos Laborales, se incluye en el presente proyecto, el Estudio de Seguridad y Salud correspondiente para su ejecución, en base al cual cada contratista elaborará un Plan que deberá ser aprobado por el Coordinador en materia de seguridad y salud nombrado al efecto por el promotor, previo al inicio de las obras.

DEL

Página 8

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

4.2. Gestión ambiental

Todas las obras del proyecto se ejecutarán garantizando el cumplimiento de la legislación y reglamentación medioambiental aplicable.

Asimismo, el conjunto de medidas, planes y acciones se detallan en el estudio de impacto medioambiental realizado.

4.3. Códigos y normas

Todas las obras del proyecto, además de lo prescrito en el presente Pliego de Condiciones, se ejecutarán cumpliendo las normas y recomendaciones en su última edición o revisión que les sean de aplicación y estén vigentes en el momento del inicio de las mismas.

4.4. Condiciones para la ejecución de las obras

La contrata está obligada al cumplimiento de la reglamentación del trabajo correspondiente, la contratación del seguro obligatorio, subsidio familiar y de vejez, seguro de enfermedad y todas aquellas reglamentaciones de carácter social vigentes o que en lo sucesivo se dicten.

5. CRITERIOS DE DISEÑO

5.1. Generalidades e hipótesis de diseño

5.1.1. Condiciones ambientales

Las condiciones ambientales del emplazamiento son las siguientes:

- Altura media sobre el nivel del mar: +310 msnm
- Tipo de Zona: A (Según R. L. A. T.)
- Temperaturas extremas: -5°C /+40°C
- Contaminación ambiental: Il Fuerte.
- Nivel de aislamiento: 25 mm/kV

Para el cálculo de la sobrecarga del viento, se considerará viento horizontal con velocidad de 140 km/h.

Se adoptarán sobrecargas correspondientes a Zona A, según RAT.

5.1.2. Datos de cortocircuito

A efectos de cálculo de esfuerzos térmicos y dinámicos de cortocircuito, se considerará una intensidad de cortocircuito de 40 kA, con una duración máxima de 0,5 segundos para 220 kV.

INDUSTRIALES DEL

PROYECTO DE EJECUCIÓN

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 9

5.1.3. Magnitudes eléctricas y distancias

Como criterios básicos de diseño se han adoptado las siguientes magnitudes eléctricas para 220 kV:

Tensión nominal	220 kV
Tensión más elevada para el material (Ve)	245 kV
Neutro	Rígido a tierra
Intensidad de cortocircuito trifásico (valor eficaz)	40 kA
Tiempo de extinción de la falta	0,5 s
Frecuencia nominal	50 Hz

Como criterios básicos para la determinación de alturas y distancias que se deben mantener en la instalación proyectada, se ha tenido en cuenta lo especificado en:

- Instrucciones Técnicas Complementarias ITC-RAT 12, 14 y 15.
- Normas UNE.21.062.80 (II), 20-100 y 21-139.
- Normas CEI.72-1 y 72-2.

5.2. Descripción general de los criterios aplicables a los trabajos de obra civil y montaje

A continuación, se exponen los criterios técnicos, organizativos, de medio ambiente y de calidad, aplicables a la actividad de construcción de subestaciones eléctricas de AT, que se deben cumplir.

5.2.1. Lanzamiento de obra. Reunión de lanzamiento

El técnico responsable de construcción, de conformidad con el director de proyecto, procederá a convocar una reunión de lanzamiento de obra, en la que por la naturaleza y características de los trabajos previstos estarán representadas las partes implicadas en los mismos.

Al menos asistirán a la citada reunión:

- Técnico responsable de construcción.
- Supervisor de obra.
- Contratistas adjudicatarios, cuando proceda.
- Coordinador de seguridad y salud asignado.
- Técnico de la demarcación, cuando proceda.

Los trabajos se realizarán bajo una dirección facultativa compuesta por el director técnico, el supervisor de obra y el coordinador de seguridad y salud.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 10

Asimismo, se convocará a la reunión de lanzamiento al departamento de seguridad y salud laboral y al departamento de medio ambiente, que decidirán sobre su asistencia en función de los condicionantes de seguridad y medioambientales de la obra y a la normativa específica que sea de aplicación.

Durante la reunión de lanzamiento el técnico responsable de construcción realizará una presentación del alcance de los trabajos incluidos en el "Proyecto de ejecución" y del programa de obra previsto, revisando conjuntamente los requisitos a satisfacer con el objeto de asegurar que:

- Son claros y completos.
- Se dispone por parte de los responsables de los trabajos en campo de la documentación y normativa técnica necesaria para dar inicio a los mismos.
- Han sido definidos, contractualmente cuando proceda, los requisitos de cualificación técnica y de seguridad exigibles al personal operativo y que las personas que van a realizar los trabajos satisfacen dichos requisitos.
- Se dispone, conforme al programa previsto, de los materiales y equipos necesarios para la ejecución de los trabajos, y que éstos últimos cuentan con los certificados y declaraciones de compatibilidad respecto a la legislación de seguridad y salud aplicable.

Si existieran requisitos ambiguos o incompletos serán resueltos por los técnicos competentes presentes, si ello fuera posible, en caso contrario se solicitarán las oportunas aclaraciones al director de proyecto.

No se dará comienzo a los trabajos sin que hayan sido convenientemente revisados y aclarados los objetivos y requisitos técnicos y/o contractuales a satisfacer en las actividades de montaje y construcción.

Del desarrollo de la reunión y de las decisiones adoptadas quedará constancia en "Acta de reunión de lanzamiento de obra".

El "Acta de la reunión de lanzamiento de obra", será enviada por el técnico responsable de construcción al director de proyecto para su distribución.

5.2.2. Planificación de los trabajos. Programa de obra

El técnico responsable de construcción elaborará un programa de obra en el que se planificarán las actividades de construcción desde la reunión de lanzamiento de obra hasta la finalización de los trabajos. Dicho programa respetará la planificación básica incluida en el proyecto de ejecución, actualizándola en lo que corresponda según los plazos previos ya transcurridos.

Si se considera adecuado se incluirán diagramas o gráficos que faciliten su comprensión, identificando la fecha prevista de inicio y final de las diferentes actividades.

El nivel de detalle de la planificación se corresponderá con la envergadura y características del proyecto que se acometa.

핌

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 11

El "Programa de Obra", se distribuirá junto con el acta de lanzamiento de la obra por el Técnico Responsable de Construcción al Director de Proyecto y a las Unidades Organizativas participantes en el proyecto para su información, así como sus actualizaciones cuando procedan.

5.2.3. Actividades de obra civil y montaje electromecánico

5.2.3.1. Recepción de equipos y materiales en obra

El Supervisor de Obra será responsable de la recepción de los materiales, componentes y equipos que lleguen a la misma, a fin de evitar la utilización de aquéllos que no cumplan los requisitos especificados.

El control de recepción de materiales y componentes conllevará:

- Cuando el material venga embalado en cajas se comprobará el buen estado de las mismas y la documentación suministrada.
- Cuando el material se recibe unitariamente, se comprobará conforme a los datos especificados y a la documentación recibida que:
 - La cantidad o número de unidades es correcto.
 - La referencia, tipo o marca es conforme a lo especificado.
 - Su estado general es adecuado, no presenta golpes, deterioros, oxidaciones, etc.

El estado de inspección podrá ser:

- ACEPTADO: Quedan habilitados para su utilización en obra.
- PENDIENTE: Los que por cualquier circunstancia no hayan sido inspeccionados, se identificarán adecuadamente segregándolos en una zona de materiales pendientes, no siendo utilizados hasta su revisión.
- RECHAZADOS: Los que no superen satisfactoriamente el resultado de la inspección, emprendiendo seguidamente las acciones oportunas para su devolución al proveedor o al Almacén General, siendo segregados del resto hasta que se haga efectiva dicha devolución.

Se dejará constancia del control de recepción mediante una anotación sobre el albarán de entrega, reflejando el resultado del control, fecha y firma del responsable. En caso de rechazo se indicará el motivo.

Las incidencias surgidas durante la recepción serán resueltas y documentadas mediante el correspondiente registro de anomalía.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 12

5.2.3.2. Supervisión de obra civil y montaje electromecánico

Durante la realización de los trabajos, el responsable de estos se asegurará que se cumplen todos los requisitos establecidos y que se realizan todas las actividades de control (verificaciones, inspecciones, pruebas, etc.), establecidas en la normativa técnica, de medio ambiente y de seguridad aplicable.

En los trabajos realizados por contratistas, los Supervisores verificarán que las actividades de control se realizan según lo establecido en la normativa técnica, de medio ambiente y de seguridad aplicable.

El control durante los trabajos de obra civil y montaje electromecánico se realizará teniendo en cuenta los siguientes aspectos:

Supervisión de los trabajos

El control de las operaciones unitarias de obra civil y montaje electromecánico se basará en el control del propio operario que realiza el trabajo, según lo establecido en los "Programas de Puntos de Inspección", aplicables:

- Montaje Electromecánico.
- Obra Civil.
- Control y Telecomunicaciones.

El "Programa de Puntos de Inspección" dispondrá de la secuencia de operaciones unitarias a supervisar de entre las que componen un trabajo o actividad, así como los criterios de aceptación que deben observarse.

El Supervisor de Obra velará por el cumplimiento de la normativa técnica, de medio ambiente y de seguridad aplicable, realizando inspecciones sistemáticas o al azar de las distintas etapas del proceso de obra civil y montaje, comprobando la realización de los controles programados.

La verificación realizada por el Supervisor de Obra quedará registrada en el formato de "Programa de Puntos de Inspección", aplicable, mediante la referencia "Correcto" o "Incorrecto".

El Supervisor de Obra mantendrá a disposición del Técnico Responsable de Construcción un Libro Diario de Obra.

El Supervisor de Obra emitirá al Técnico Responsable de Construcción informes sobre la marcha de los trabajos cuya periodicidad será fijada por el Técnico Responsable de Construcción atendiendo a las características de cada proyecto.

El Coordinador en materia de seguridad y salud controlará la aplicación coherente y responsable de los principios de acción preventiva conforme a la legislación y normativa técnica de seguridad aplicable.

EGIO OFICIAL DE INGENIER

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 13

Cualquier incidencia durante la realización de los trabajos deberá ser resuelta y documentada conforme se indica en el apartado de "Resolución de anomalías durante la construcción".

5.2.3.3. Control por el técnico responsable de construcción.

El Técnico Responsable de Construcción podrá realizar, cuando lo estime conveniente, controles para comprobar la buena marcha de los trabajos programados, lo que documentará en el Informe Final de Obra que trasladará al Director de Proyecto.

5.2.3.4. Resolución de anomalías durante la construcción

El Supervisor de Obra detectará y comunicará al Técnico Responsable de Construcción, cualquier anomalía o deficiencia que detecte en el transcurso de los trabajos.

El Técnico Responsable de Construcción determinará, en cada caso, el tratamiento que corresponde según la naturaleza de la anomalía o deficiencia comunicada.

Anomalías que pueden ser solventadas en obra.

En el caso que la anomalía pueda resolverse de manera simple e inmediata a través de las prácticas habituales de trabajo, se procederá a su resolución, dejando constancia del problema y su resolución en el registro del "Programa de Puntos de Inspección" o informe de obra, dependiendo del tipo de actuación.

Anomalías que dan lugar a un informe de no conformidad.

Si la anomalía no puede resolverse de manera simple o inmediata y/o exige la intervención de un área diferente de la Unidad Organizativa responsable de Construcción, sin implicar todo ello una modificación en el diseño de la instalación, en este caso deberá ser resuelta y documentada.

5.2.3.5. Identificación y trazabilidad

La identificación de la documentación técnica, materiales, instalaciones y equipos implicados en el desarrollo de un proyecto será trazable respecto a dicho proyecto.

5.2.3.6. Manipulación, almacenamiento y conservación

El Supervisor de Obra establecerá documentalmente las condiciones de manejo, almacenamiento y conservación que estime adecuadas para aquellos materiales o equipos que por sus condiciones especiales así lo requieran.

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 14

5.2.3.7. Mantenimiento de útiles y herramientas

El Supervisor de Obra comprobará que:

- Se realizan los oportunos trabajos de mantenimiento, correctivo y/o preventivo, de los útiles y herramientas, utilizados para el desarrollo de los trabajos de construcción y que se encuentran dentro del periodo de mantenibilidad.
- El material de seguridad se encuentra en buen estado y se le han realizado los controles requeridos en la normativa aplicable.
- Los equipos de inspección, medición y ensayo utilizados en el control de los trabajos, así como en las pruebas finales de la instalación, son gestionados de acuerdo a lo establecido en los procedimientos aplicables.

Los mismos requisitos se harán extensivos a los equipos, útiles y herramientas propiedad de contratistas externos.

5.2.4. Gestión de residuos

El Supervisor de Obra comprobará que se aplica el procedimiento de gestión de los residuos generados en las instalaciones. En particular definirá las áreas de almacenamiento de residuos y al finalizar la obra verificará que todos los residuos han sido adecuadamente gestionados.

5.2.5. Pruebas en la instalación

5.2.5.1. Pruebas en vacío

Una vez finalizados los trabajos de obra civil y montaje electromecánico se procederá, bajo la coordinación del Director de Proyecto, a la realización de las Pruebas en Vacío de la Instalación de acuerdo con las instrucciones técnicas correspondientes.

5.2.5.2. Pruebas en tensión

Las Pruebas en Tensión tendrán por objeto comprobar la adecuación al uso de la instalación conforme a los criterios funcionales establecidos en el Proyecto.

Los protocolos de las pruebas a realizar, así como los criterios para su ejecución serán redactados conforme a lo especificado en la documentación técnica aplicable.

EGIO OFICIAL DE INGENIEF

novotec

PROYECTO DE EJECUCIÓN SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

Página 15

5.2.5.3. Finalización de la obra

Finalizados los trabajos de construcción, el Supervisor de Obra remitirá al Técnico Responsable de Construcción, en función de la tipología de control de la documentación adoptada:

- General: Libro de Obra y Programas de puntos de Inspección cumplimentados.
- Simplificado: Informe de obra.

Una vez revisados y aprobados por el Técnico de Construcción la documentación recibida, éste remitirá al Director de Proyecto el Informe/ Comunicación de Final de Obra.

5.2.5.4. Control de la documentación

El control de la documentación generada según la tipología de proyecto aplicable se adaptará a lo indicado en el control de documentos del sistema de gestión de ingeniería y construcción de subestaciones.

SET AMPLIACIÓN PRE-RUEDA PROMOTORES 400/220 kV

EMPECINADO I ENERGY S.L.U.

Paseo Club Deportivo 1, edificio 13, 28223 Pozuelo de Alarcón, Madrid (España)

Habilitación Col. nº 06551 JULIAN GARCIA SANCHEZ Profesional