COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº. Colegiado.: 0002474
PEDRO MACHIN ITURRIA

VISADO Nº.: VD00222-22A
DE FECHA: 26/1/22

PROYECTO PARQUE FOTOVOLTAICO LA MALLATA Y SU INFRAESTRUCTURA DE EVACUACIÓN

SEPARATA AYUNTAMIENTO DE HUESCA

Término Municipal de Huesca

ÍNDICE

TABLAS RESUMEN	2
1 ANTECEDENTES	4
2 OBJETO	5
3 DATOS DEL PROMOTOR	5
4 CONEXIÓN A LA RED	6
5 UBICACIÓN	
6 DESCRIPCIÓN DE LA AFECCIÓN	
7 PARQUE FOTOVOLTAICO	
7.1 DESCRIPCIÓN GENERAL	
7.2 INFRAESTRUCTURA ELÉCTRICA	
7.2.1 CIRCUITOS ELÉCTRICOS	
7.2.2 PUESTA A TIERRA	18
7.3 OBRA CIVIL	19
7.3.1 DESBROCE, LIMPIEZA DEL TERRENO Y GESTIÓN DE LA TIERRA VEGETA	
	_
7.3.2 MOVIMIENTO DE TIERRAS	
7.3.3 VIALES DEL PARQUE FOTOVOLTAICO	
7.3.4 HINCADO DE LOS SEGUIDORES SOLARES	
7.3.5 CIMENTACIÓN DE POWER STATIONS 7.3.6 ZANJAS PARA EL CABLEADO	
7.3.5 ZANJAS PARA EL CABLEADO	
7.3.8 HITOS DE SEÑALIZACIÓN	
7.4 INSTALACIONES AUXILIARES	
7.4.1 ZONA DE ACOPIO Y MAQUINARIA	
7.4.2 VALLADO PERIMETRAL	
7.4.3 SISTEMA DE SEGURIDAD Y VIGILANCIA	
7.4.4 EDIFICIO DE CONTROL Y MANTENIMIENTO	26
7.4.5 PUNTO LIMPIO	27
7.4.6 ESTACIÓN METEOROLÓGICA	27
8 INFRAESTRUCTURAS DE EVACUACIÓN DE ENERGÍA DEL PARQUE FOTOVOLTA LA MALLATA	
8.1 CENTRO DE ENTREGA PFV LA MALLATA	28
8.1.1 CARACTERÍSTICAS DEL CENTRO DE ENTREGA	28
8.1.2 CARACTERÍSTICAS DE LA OBRA CIVIL	29
8.2 LÍNEA SUBTERRÁNEA 15 kV CENTRO DE ENTREGA PFV LA MALLATA – SET PLHUS	
8.2.1 CABLE AISLADO DE POTENCIA	30
8.2.2 TERMINACIONES	
8.2.3 EMPALMES	
8.2.4 PUESTAS A TIERRA	
8.2.5 CANALIZACIÓN SUBTERRÁNEA	
9 PLANIFICACIÓN	36
10 CONCLUSIÓN	37
PLANOS	38

TABLAS RESUMEN

Tabla 1: Resumen PFV

PARQUE FOTOVOLTAICO LA MALLATA					
Datos generales					
Promotor MAIDEVERA SOLAR CIF B99524043					
Término municipal del PFV	Huesca				
Capacidad de acceso	10 MW				
Potencia inversores (a 40°C)	11,46 MVA				
Potencia total módulos fotovoltaicos	13 MWp				
Superficie poligonal del PFV	32,08 ha				
Superficie vallada del PFV	22,69 ha				
Perímetro del vallado del PFV	3,90 km				
Ratio ha/MWp	1,75				
Radiación					
Índice de radiación MEDIO DIARIO del PFV	4,63 kWh/m²/día				
Índice de radiación ANUAL de la planta en (dato medio diario x 365 días)	1.691 kWh/m ²				
Producción ene	ergía				
Estimación de la energía eléctrica producida anual	23.060 MWh/año				
Producción específica	1.773 kWh/kWp/año				
Performance ratio	80,10 %				
Datos técnico	Datos técnicos				
Número de módulos 670 Wp 19.410					
Seguidor solar 1 eje para 60 módulos (1V60)	para 60 módulos (1V60) 248				
Seguidor solar 1 eje para 30 módulos (1V30)	151				
Cajas de seccionamiento y protección (CSP)	51				
Inversor 3.820 kVA	3				
Power Station 3,82 MVA (Inversor + CT)	3				

Tabla 2: Resumen Centro de Entrega

CENTRO DE ENTREGA PFV LA MALLATA 15 kV		
Tipo	Aparamenta GIS	
Tensión nominal	15 kV _{ef}	
Tensión asignada 24 kV _{ef}		
Frecuencia nominal 50 Hz		
Celdas		

- 2 Celdas de línea con interruptor-seccionador.
- 1 Celda de medida y cuadro de medida.
- 1 Celda de protección con interruptor automático y protecciones.

Tabla 3: Resumen Línea de evacuación

LÍNEA SUBTERRÁNEA DE 15 kV CENTRO DE ENTREGA PFV LA MALLATA – SET PLHUS		
Tensión nominal	15 kV	
Tensión más elevada	17,5 kV	
Factor de potencia (cos φ)	0,95	
Categoría	Tercera	
Frecuencia	50 Hz	
Categoría	Α	
Nº de circuitos	2	
Cable	Cable RH5Z1 XLPE 3 x 1 x 400 mm² Al	
Longitud de línea	4.950 m	
Longitud de zanja	4.746 m	

1 ANTECEDENTES

La sociedad MAIDEVERA SOLAR S.L. es la promotora del Parque Fotovoltaico (PFV) LA MALLATA en el Término Municipal de Huesca (Huesca).

Con fecha 3 de septiembre de 2018, la sociedad MAIDEVERA SOLAR S.L. depositó aval en cumplimiento del artículo 66 bis del RD 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica, para la tramitación de las solicitudes de acceso a la Red de Distribución.

La sociedad anteriormente mencionada solicitó punto de conexión para el PFV LA MALLATA de 10 MW, obteniendo acceso favorable en SET PLHUS 15 kV por parte ENDESA-DISTRIBUCIÓN con fecha 25 de septiembre de 2018.

Con fecha 28 de enero de 2019, Red Eléctrica de España emitió informe favorable desde la perspectiva de la red de transporte a dicha conexión.

Continuando con el procedimiento de conexión, con fecha 10 de julio de 2019, MAIDEVERA SOLAR S.L. ha recibido por parte de E-Distribución las Condiciones Técnico – Económicas para la conexión del PFV LA MALLATA en la SET PLHUS 15 kV.

El 30 de noviembre de 2020 se presentó la solicitud de Autorización Administrativa Previa del Parque Fotovoltaico LA MALLATA y su infraestructura de evacuación ante el Servicio Provincial de Huesca Sección de Energía Eléctrica, proyecto redactado por el ingeniero industrial Pedro Machín Iturria con número de visado VD03857-20A y fecha 19/11/2020.

En esa misma fecha se presentó la Solicitud de Estudio de Impacto Ambiental Simplificada ante el Instituto Aragonés de Gestión Ambiental (INAGA).

Con fecha 14 de diciembre de 2020, el Servicio Provincial de Huesca - Sección de Energía Eléctrica, admitió a trámite de Autorización Administrativa Previa el proyecto de instalación del Parque Fotovoltaico LA MALLATA y su infraestructura de evacuación con número de expediente AT-222/2020.

Para dar continuidad a la tramitación de esta instalación de parque fotovoltaico se redacta el presente proyecto.

2 OBJETO

La presente separata se redacta para informar al Ayuntamiento de Huesca de las actuaciones correspondientes al proyecto del Parque Fotovoltaico LA MALLATA Y SUS INFRAESTRUCTURAS DE EVACUACIÓN en su término municipal.

3 DATOS DEL PROMOTOR

Titular: MAIDEVERA SOLAR S.L.

CIF: B99524043

Domicilio a efectos de notificaciones: C/ Argualas nº40, 1ª planta, D, CP 50.012
 Zaragoza

- Teléfono: 876 712 891

Correo electrónico: info@atalaya.eu

4 CONEXIÓN A LA RED

Las infraestructuras de evacuación de energía del PFV LA MALLATA son las siguientes:

- CENTRO DE ENTREGA PFV LA MALLATA 15 kV
- LÍNEA SUBTERRÁNEA 15 kV CENTRO DE ENTREGA PFV LA MALLATA SET PLHUS
- SET PLHUS 15 kV (existente)

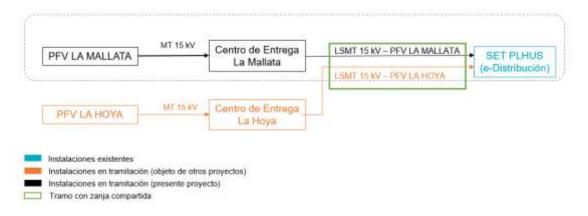


Ilustración 1: Infraestructuras de evacuación

En cumplimiento de la disposición adicional primera del RD 1183/2020, el PFV dispondrá de un sistema de control, coordinado para todos los módulos de generación e instalaciones de almacenamiento que la integren, que impida que la potencia activa que éste pueda inyectar a la red supere su capacidad de acceso (10 MW). Este control se realizará mediante el Power Plant Controler (PPC), ubicado en el Centro de Entrega.

5 UBICACIÓN

El PFV LA MALLATA está ubicado a unos 460 metros sobre el nivel del mar en el Término Municipal de Huesca, en la provincia de Huesca.

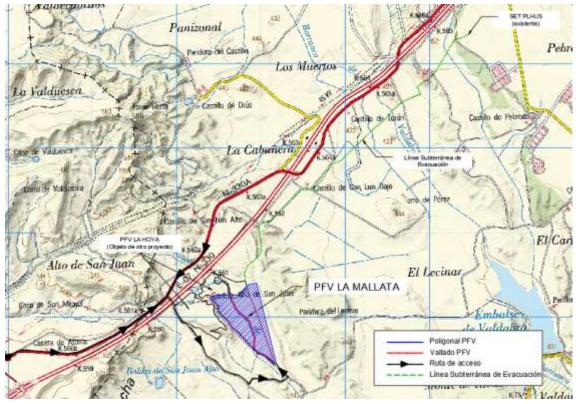


Ilustración 2: Ubicación del PFV

En la siguiente tabla se recogen las dimensiones generales del parque:

Tabla 4: Dimensiones PFV

Dimensiones PFV		
Superficie poligonal del PFV	32,08 ha	
Superficie vallado PFV	22,69 ha	
Longitud del vallado del PFV	3,90 km	

6 DESCRIPCIÓN DE LA AFECCIÓN

El Parque Fotovoltaico La Mallata y sus infraestructuras de evacuación se encuentran íntegramente dentro del término municipal de Huesca, en Suelo No Urbanizable Genérico – Secano.

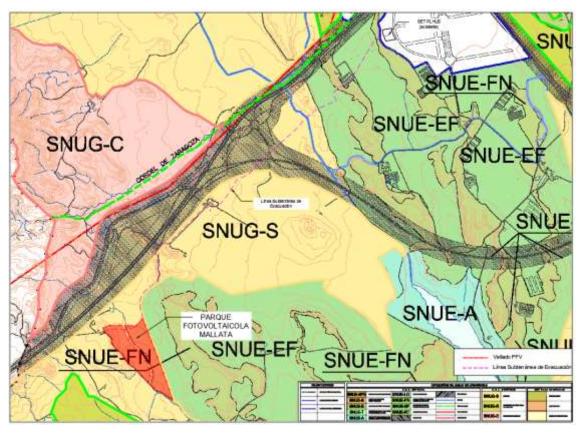


Ilustración 3: PFV sobre PGOU

6.1 COORDENADAS DE LOS LÍMITES DEL PFV

6.1.1 POLIGONAL

Coordenadas UTM ETRS 89 30N PFV LA MALLATA			
Vértices Poligonal			
Vértice	Хитм	Yuтм	
V1	707.706	4.660.818	
V2	707.723	4.660.808	
V3	707.913	4.660.609	
V4	707.966	4.660.559	
V5	708.014	4.660.547	
V6	708.087	4.660.497	
V7	708.150	4.660.441	
V8	708.178	4.660.444	
V9	707.939	4.661.395	
V10	707.844	4.661.371	
V11	707.726	4.661.251	
V12	707.467	4.661.251	
V13	707.383	4.661.215	
V14	707.409	4.661.194	
V15	707.435	4.661.165	
V16	707.472	4.661.133	
V17	707.486	4.661.111	
V18	707.486	4.661.077	
V19	707.504	4.661.039	
V20	707.539	4.661.000	
V21	707.585	4.660.961	
V22	707.601	4.660.942	
V23	707.617	4.660.920	
V24	707.628	4.660.893	
V25	707.647	4.660.868	
V26	707.684	4.660.833	

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA Nº. Colegiado:: 0002474 PEDRO MACHIN ITURRIA ALSANDA AP.: VD00222-22A IDEAFECHA:: 26/1/22 E-VISADO

6.1.2 VALLADOS

6.1.2.1 RECINTO 1

VALLADO RECINTO 1 PFV LA MALLATA Coordenadas UTM ETRS 89 30N		
Vértice	X _{UTM}	Yutm
1	707.726	4.661.251
2	707.823	4.661.349
3	707.834	4.661.326
4	707.852	4.661.267
5	707.961	4.660.986
6	708.062	4.660.711
7	708.149	4.660.458
8	708.094	4.660.502
9	708.020	4.660.552
10	707.977	4.660.564
11	707.957	4.660.576
12	707.914	4.660.624
13	707.920	4.660.676
14	707.933	4.660.716
15	707.933	4.660.716
16	707.933	4.660.716
17	707.929	4.660.768
18	707.865	4.660.940
19	707.851	4.660.959
20	707.809	4.660.999
21	707.734	4.661.057
22	707.700	4.661.100
23	707.689	4.661.132
24	707.635	4.661.251

6.1.2.2 RECINTO 2

VALLADO RECINTO 2 PFV LA MALLATA Coordenadas UTM ETRS 89 30N			
Vértice X _{UTM} Y _{UTM}			
1	707.409	4.661.226	
2	707.467	4.661.251	
3	707.611	4.661.251	
4	707.687	4.661.086	
5	707.723	4.661.043	
6	707.746	4.661.021	
7	707.771	4.661.004	
8	707.843	4.660.927	
9	707.909	4.660.768	
10	707.913	4.660.720	
11	707.900	4.660.680	
12	707.897	4.660.634	
13	707.728	4.660.814	
14	707.699	4.660.831	
15	707.672	4.660.853	
16	707.635	4.660.897	
17	707.624	4.660.924	
18	707.591	4.660.967	
19	707.545	4.661.005	
20	707.510	4.661.043	
21	707.494	4.661.078	
22	707.494	4.661.113	
23	707.469	4.661.146	
24	707.431	4.661.180	
25	707.410	4.661.226	

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA Nº.Colegiado.: 0002474 PEDRO MACHIN ITURRIA ALSADO AV.: VD00222-22A DE FECHA: 26/1/22 E-VISADO

6.1.3 LÍNEA DE EVACUACIÓN

LÍNEA SUBTERRÁNEA DE EVACUACIÓN 15 kV					
Coordenadas UTM ETRS 89 30N					
Vértice	X _{UTM}	Y _{UTM}	Vértice	X _{UTM}	Y _{UTM}
1	710.440	4.664.332	40	708.254	4.662.271
2	710.395	4.664.310	41	708.170	4.662.189
3	710.324	4.664.287	42	708.116	4.662.134
4	710.291	4.664.278	43	708.103	4.662.121
5	710.058	4.663.887	44	708.094	4.662.120
6	710.025	4.663.856	45	708.084	4.662.118
7	710.003	4.663.835	46	708.063	4.662.118
8	709.995	4.663.826	47	708.040	4.662.123
9	709.992	4.663.817	48	708.019	4.662.117
10	709.978	4.663.804	49	708.002	4.662.103
11	709.965	4.663.801	50	707.984	4.662.082
12	709.945	4.663.793	51	707.964	4.662.049
13	709.885	4.663.749	52	707.985	4.661.934
14	709.850	4.663.715	53	707.990	4.661.902
15	709.860	4.663.689	54	707.989	4.661.865
16	709.884	4.663.632	55	708.000	4.661.816
17	709.775	4.663.587	56	707.999	4.661.784
18	709.682	4.663.545	57	707.992	4.661.753
19	709.545	4.663.436	58	707.979	4.661.730
20	709.474	4.663.346	59	707.951	4.661.697
21	709.304	4.663.193	60	707.951	4.661.697
22	708.989	4.662.894	61	707.951	4.661.697
23	708.953	4.662.849	62	707.905	4.661.658
24	708.839	4.662.800	63	707.905	4.661.658
25	708.824	4.662.794	64	707.905	4.661.658
26	708.810	4.662.772	65	707.905	4.661.658
27	708.804	4.662.746	66	707.905	4.661.658
28	708.792	4.662.728	67	707.905	4.661.658
29	708.769	4.662.701	68	707.858	4.661.619
30	708.742	4.662.650	69	707.825	4.661.583
31	708.664	4.662.551	70	707.799	4.661.514
32	708.622	4.662.521	71	707.806	4.661.427
33	708.605	4.662.512	72	707.823	4.661.369
34	708.578	4.662.503	73	707.828	4.661.353
35	708.545	4.662.499	74	707.831	4.661.307
36	708.505	4.662.499	75	707.752	4.661.225
37	708.482	4.662.504	76	707.554	4.661.021
38	708.473	4.662.498	77	707.562	4.661.004
39	708.451	4.662.474	78	707.557	4.660.998

6.2 RESUMEN PRESUPUESTO DE LA PARTE AFECTADA EN EL T.M.

Parque Fotovoltaico LA MALLATA		
CONCEPTO	PRECIO	
1.1 Módulos fotovoltaicos	4.458.106 €	
1.2 Obra civil	368.525 €	
1.3 Centros de transformación e inversores	540.392 €	
1.4 Conductores C.C.	237.037 €	
1.5 Conductores C.A.	22.938 €	
1.6 Sistema de vigilancia	101.953 €	
1.7 Varios	14.000 €	
1.8 Monitoring & Control	245.000 €	
Presupuesto de ejecución material PFV	5.987.952 €	

Centro de entrega PFV La Mallata		
CONCEPTO	PRECIO	
2.1 Obra civil - centro de entrega	693 €	
2.2 Centro de entrega	29.000€	
Presupuesto de ejecución material Centro de entrega	29.693 €	

Línea subterránea evacuación 15 kV		
CONCEPTO PRECIO		
3.1 Obra civil - línea subterránea	70.649 €	
3.2 Conductores/Accesorios - línea subterránea	240.540 €	
Presupuesto de ejecución material Línea Subterránea 15 kV	311.189 €	

TOTAL PFV La Mallata y sus infraestructuras de evacuación						
CONCEPTO	PRECIO					
Presupuesto de ejecución material PFV + CE + LSMT	6.328.833 €					
Estudio de Seguridad y Salud	24.490 €					
TOTAL PRESUPUESTO DE EJECUCIÓN MATERIAL	6.353.324 €					

Gastos generales y dirección de obra 13%	825.932 €
Beneficio Industrial 6%	381.199 €
Total ejecución	7.560.455 €

El presupuesto de ejecución material del PFV LA MALLATA y su infraestructura de evacuación asciende a SEIS MILLONES TRESCIENTOS CINCUENTA Y TRES MIL TRESCIENTO VEINTICUATRO EUROS (6.353.324 €).

6.3 RELACIÓN DE BIENES Y DERECHOS AFECTADOS

			Cum DEV	Sup.	Sup.	Línea Subterránea					
Término Municipal	Polígono	Parcela	Referencia Catastral	Uso	Sup. PFV (m²)	camino (m²)	veget (m²)	Long. (m)	Sup. ocupac. (m²)	Serv. paso (m²)	Ocup. temp. (m²)
Huesca	13	5	22901A01300005	Labor o Labradío secano				143,14	114,52	429,43	200,97
Huesca	13	6	22901A01300006	Labor o Labradío regadío				328,17	262,54	984,52	458,39
Huesca	13	7	22901A01300007	Labor o Labradío regadío				240,98	192,78	722,78	337,43
Huesca	13	8	22901A01300008	Labor o Labradío secano				766,75	613,40	2.300,24	1.069,91
Huesca	13	10	22901A01300010	Labor o Labradío secano				1.534,99	1.227,99	4.604,98	2.146,62
Huesca	13	12	22901A01300012	Labor o Labradío secano	226.904,50	1.220,77	15.142,94	157,47	120,69	472,40	229,76
Huesca	13	14	22901A01300014	Pastos		223,38					
Huesca	13	9003	22901A01309003	Improductivo				6,09	4,87	18,28	8,38
Huesca	13	9008	22901A01309008	Vía de comunicación de dominio público		6.114,92					
Huesca	13	15	22901A01300015	Labor o Labradío secano		1.210,19					
Huesca	13	16	22901A01300016	Labor o Labradío secano		637,30					
Huesca	13	17	22901A01300017	Labor o Labradío secano		1.012,09					
Huesca	13	18	22901A01300018	Labor o Labradío secano		275,15					
Huesca	13	9004	22901A01309004	Improductivo				12,81	10,25	38,59	20,71
Huesca	13	9005	22901A01309005	Improductivo				18,46	14,77	55,39	24,82
Huesca	13	9006	22901A01309006	Improductivo				5,08	4,06	15,23	7,28
Huesca	14	9003	22901A01409003	Improductivo		5.854,88					
Huesca	14	3	22901A01400003	Labor o Labradío secano		217,58					
Huesca	12	4	22901A01200004	Labor o Labradío secano				448,41	358,76	1.345,85	630,54
Huesca	12	5	22901A01200005	Labor o Labradío secano				366,92	293,54	1.100,18	485,37
Huesca	12	6	22901A01200006	Labor o Labradío secano				222,25	177,80	667,33	338,01
Huesca	12	9000	22901A01209000					62,20	49,76	187,89	86,40
Huesca	12	33	22901A01200033	Monte bajo				38,89	31,08	116,05	52,83
Huesca	12	9007	22901A01209007	Improductivo				6,11	4,89	18,32	8,59
Huesca	12	9009	22901A01209009	Improductivo				3,63	2,90	11,09	5,17

7 PARQUE FOTOVOLTAICO

7.1 DESCRIPCIÓN GENERAL

Las infraestructuras del sistema fotovoltaico de conexión a red eléctrica se componen de dos partes fundamentales: un generador fotovoltaico donde se recoge y se transforma la energía de la radiación solar en electricidad, mediante módulos fotovoltaicos, y una parte de transformación de esta energía eléctrica de corriente continua a corriente alterna que se realiza en el inversor y en los transformadores, para su inyección a la red.

El conjunto está formado por 19.410 módulos fotovoltaicos de silicio monocristalino de 670 Wp, 248 seguidores fotovoltaicos a un eje de 1Vx60 y 151 seguidores fotovoltaicos a un eje de 1Vx30 con pitch de entre 5 y 6 metros, 51 cajas de seccionamiento y protección (CSP) y 3 Power Station (PS) de 3,82 MVA conectadas en dos circuitos eléctricos con el Centro de Entrega mediante una red subterránea a 15 kV.

7.2 INFRAESTRUCTURA ELÉCTRICA

7.2.1 CIRCUITOS ELÉCTRICOS

7.2.1.1 Circuitos de Baja Tensión

Los circuitos de energía eléctrica en BT corresponden a los circuitos de corriente continua desde las ramas de módulos fotovoltaicos hasta las CSP y a los circuitos de corriente continua desde las CSP hasta los inversores.

Los cables de las ramas serán de tipo solar e irán instalados bajo los seguidores fotovoltaicos hasta uno de los extremos donde bajarán a tierra e irán enterrados bajo tubo hasta las CSP. Serán necesarios para evacuar la energía generada cables de cobre (Cu) 2 x 1 x 6 y/o 10 mm² de sección tipo ZZ-F/H1Z2Z2-K. Estos cables serán – según IEC 60228 - de cobre electrolítico estañado clase 5, finamente trenzado, con aislamiento de polietileno reticulado (XLPE) HEPR 120°C y cubierta exterior de elastómero termoestable libre de halógenos. El aislamiento y la cubierta están sólidamente unidos (aislamiento de dos capas). La tensión nominal del cable en CC es de 1,5 kV, siendo la máxima tensión de servicio admisible de 1,8 kV.

Los cables de BT para la conexión entre las CSP y el inversor central serán de aluminio (Al) de 2 x 2 x 240/300 mm² de sección tipo XZ1. Según UNE-EN 60228, serán cables rígidos de clase 2, con aislamiento XLPE tipo DIX3 y cubierta tipo cubierta exterior de poliolefina termoplástica libre de halógenos. El nivel de aislamiento del cable será de

0,6/1 kV en CA e irá directamente enterrado en zanja excepto en los cruces donde irá entubado.

7.2.1.2 Circuitos de Media Tensión

La energía generada en el parque fotovoltaico se recoge con un circuito subterráneo de media tensión (15 kV) pasando por las Power Stations hasta el Centro de Entrega de 15 kV.

Esta red subterránea será en régimen permanente, con corriente alterna trifásica, a 50 Hz de frecuencia y a la tensión nominal de 15 kV.

Circuito	Tramo	Potencia Acumulada	Intensidad acumulada	Long.	Nº ternas	Sección	lmax	Caída tensión	Pérd poter	
		MW	Α	km		mm²	Α	%	%	kW
	PS1 - PS2	3,82	154,77	0,46	1	150	245,00	0,23%	0,23%	8,63
PS-CE	PS2 - PS3	7,64	309,54	0,26	1	240	345,00	0,18%	0,16%	12,03
	PS3 - CE	11,46	464,31	0,19	2	240	565,80	0,10%	0,09%	9,89

TOTAL Circuito PS-CE 0,51% 0,27% 30,56

Se puede ver que tanto las pérdidas de potencia como la máxima caída de tensión son inferiores a los límites establecidos.

La sección de conductor en los diferentes tramos podrá ser variable dentro del rango: 95, 150, 240, 400, 630 mm², y será calculada con mayor detalle en el proyecto constructivo.

Cable aislado de potencia

Los conductores a utilizar serán cables unipolares tipo RH5Z1 12/20 kV de Aluminio, con aislamiento de polietileno reticulado (XLPE) y cubierta exterior de poliolefina termoplástica.

Estarán debidamente apantallados y protegidos contra la corrosión que pueda provocar el terreno donde se instale o la producida por corrientes vagabundas, y tendrá suficiente resistencia para soportar los esfuerzos a que pueda ser sometido durante el tendido.

Las pantallas metálicas de los cables de Media Tensión se conectarán a tierra en cada uno de sus extremos.

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº.Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO A.: VD00222-22A
DEAFECHA: 26/1/22

E-VISADO

Se dispondrán directamente enterrados en terreno, formando una terna. El número de ternas, sección y longitud de los conductores varía según el tramo.

Las características principales de los cables serán:

- Tipo de cable:	RH5Z1
- Tensión:	12/20 kV
- Conductor:	Aluminio
- Aislamiento:	Polietileno Reticulado (XLPE)
- Pantalla:	Corona de hilos de Cu

Terminaciones

Las terminaciones se instalarán en los extremos de los cables para garantizar la unión eléctrica de éste con otras partes de la red, manteniendo el aislamiento hasta el punto de la conexión.

Las terminaciones limitarán la capacidad de transporte de los cables, tanto en servicio normal como en régimen de sobrecarga, dentro de las condiciones de funcionamiento admitidas.

Del mismo modo, las terminaciones admitirán las mismas corrientes de cortocircuito que las definidas para el cable sobre el cual se van a instalar.

Empalmes

Los empalmes serán adecuados para el tipo de conductores empleados y aptos igualmente para la tensión de servicio.

Estos empalmes podrán ser enfilables, retráctiles en frío o con relleno de resina y no deberán disminuir en ningún caso las características eléctricas y mecánicas del cable empalmado.

Protecciones

Para la protección contra sobrecargas, sobretensiones, cortocircuitos y puestas a tierra se dispondrán en las Subestaciones Transformadoras los oportunos elementos (interruptores automáticos, relés, etc.), los cuales corresponderán a las exigencias que presente el conjunto de la instalación de la que forme parte la línea subterránea en proyecto.

7.2.2 PUESTA A TIERRA

La puesta a tierra consiste en una unión metálica directa entre los elementos eléctricos que componen el PFV y electrodos enterrados en el suelo con objeto de garantizar la seguridad de personas y equipos en caso de faltas o descargas a tierra.

La red de tierras se realizará siguiendo un esquema TT. De esta forma, se conectarán todas las masas del parque entre sí y por otro lado se realizará un mallazo de tierra independiente para cada transformador de servicios auxiliares de los inversores.

Todo el sistema estará interconectado en paralelo, y unirá también mediante un latiguillo de tierras toda la estructura metálica de la planta.

Alrededor de los centros de transformación e inversión se instalará un mallazo de tierra al cual se conectará todas las puestas a tierra previstas de los equipos, de forma que se forme un anillo entre los centros de transformación e inversión y el centro de control del parque. Este anillo será interconectado con la red de tierras de la planta.

Además de este mallazo, se realizará otro mallazo independiente cercano a cada inversor para conectar el neutro de los transformadores de servicios auxiliares de los inversores.

La instalación de puesta a tierra estará constituida por una red de tierra mallada, reforzada por electrodos de puesta a tierra (en caso de ser necesario) para asegurar un valor de resistencia de puesta a tierra acorde a las indicaciones de los estándares de aplicación. A la malla se conectarán alternativamente las armaduras metálicas de pilares de hormigón, así como las estructuras metálicas.

Las características principales de los componentes de la red de tierras serán:

- Cable de cobre desnudo
 - Alrededor de las Power Station......50 mm²
- Picas de acero recubierto de cobre de 2 metros de longitud y diámetro de 14 mm²:
 - En cada CSP
 - En las esquinas del mallazo de cada Power Station
 - A lo largo del vallado perimetral, ubicadas en los puntos donde se hallan los báculos del sistema CCTV
 - En las esquinas del mallazo de cada transformador de servicios auxiliares

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº.Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO A.: VD00222-22A
DEAFECHA: 26/1/22

E-VISADO

Los conductores de tierra se tenderán en la misma zanja que los circuitos de fuerza del parque directamente enterrados, y grapados a los postes de los seguidores hasta su canalización por zanja.

7.3 OBRA CIVIL

La instalación del PFV requiere una serie de actuaciones sobre el terreno para poder implantar todas las instalaciones necesarias para su construcción. Estas actuaciones comienzan con el desbroce y limpieza del terreno, y el movimiento de tierras necesario incluyendo accesos y viales interiores, así como las zanjas para el tendido de los diferentes circuitos de baja y media tensión.

Además se realizarán todas las catas del terreno necesarias para efectuar todos los trabajos objeto del presente documento.

7.3.1 DESBROCE, LIMPIEZA DEL TERRENO Y GESTIÓN DE LA TIERRA VEGETAL

Se trata de un terreno de tierra labrada sin vegetación, por lo tanto, el desbroce se considerará casi nulo.

El desbroce y limpieza del terreno de la zona afectada se realizará mediante medios mecánicos. Comprenderá los trabajos necesarios para la retirada de maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente en la zona proyectada.

En el trazado de caminos y zanjas se retirará la capa de tierra vegetal hasta una profundidad media de 25 cm.

La tierra vegetal no se llevará a vertedero. En el caso de la zanja, se acopiará en un cordón lateral de no más de 1 metro de altura junto a la excavación de la misma para su posterior extendido sobre ella, minimizando así el posible impacto visual que se podría generar. En el caso de caminos, se acopiará la tierra vegetal retirada para su posterior extendido en parcelas adyacentes.

7.3.2 MOVIMIENTO DE TIERRAS

Dadas las características de la orografía del terreno, solo será necesario realizar movimientos de tierra en algunas zonas de la explanada donde se ubican los seguidores con objeto de adecuar el terreno a la pendiente asumible por los mismos.

Otros movimientos de tierra a realizar en la construcción del parque son los asociados a la formación de la explanada donde se ubica el centro de transformación, al trazado

de los caminos interiores y de acceso al parque, así como a la ejecución de las zanjas para el alojamiento de los cables de baja y media tensión.

El trazado en planta y alzado de los caminos se ha ajustado a la orografía del terreno con el fin de minimizar el movimiento de tierras y siempre atendiendo al criterio de menor afección al medio.

Para poder calcular el volumen de las tierras se ha descargado del Centro Nacional de Información Geográfica un modelo digital del terreno obtenido por interpolación a partir de la clase terreno de vuelos Lidar del Plan Nacional de Ortofotografia Aérea (PNOA) obtenidas por estereocorrelación automática de vuelo fotogramétrico PNOA con resolución de 25 a 50 cm/pixel.

Se ha intentado compensar el volumen de desmonte y terraplenado para aprovechar al máximo las tierras, de forma que el transporte de tierras a vertedero se vea reducido al mínimo posible.

El cálculo de la cubicación se ha realizado con el software topográfico MDT, obteniendo los siguientes resultados (ver tabla):

Tabla 5: Volumen de tierras y firmes de los ramales del PFV

		Vo	lumen Tierr	Volumer	n Firmes	
EJE	Longitud (m)	Desmonte (m³)	Terraplén (m³)	T. Vegetal (m³)	Subbase (m³)	Base (m³)
ADECUACIÓN ACCESOS	2.161,59	40,13	26,75	13,38	1.902,38	1.182,10
VIAL DE ACCESO	1.176,36	881,09	502,47	336,15	974,97	605,83
VIALES INTERIORES	2.807,12	1.194,62	1.539,22	4.611,74	1.623,18	992,66
EXPLANADAS PS	-	30,41	36,50	30,41	-	-
EXPLANADA PFV	-	13.568,64	13.404,27	5.809,00	-	-
EXPLANADA CE	-	4,63	4,63	5,55	-	-
EXPLANADA EDIFICIO CONTROL	-	21,44	38,09	67,25	-	-
SUMA TOTAL	6.145,07	15.740,95	15.551,92	10.873,48	4.500,53	2.780,59

- Volumen de desmonte = 15.740,95 m³
- Volumen de terraplén = 15.551,92 m³

De lo anterior se obtiene un balance de tierras de 189,03 m³, en este caso se trata de tierras sobrantes. La gestión de las tierras consiste en reutilizarlas en la medida de lo posible en la propia obra, siendo el resto retirado prioritariamente a plantas de fabricación de áridos para su reciclaje o, si esto no fuera posible, a vertederos autorizados.

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº. Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO Aº.: VD00222-22A
DEAFECHA: 26/1/22

E-VISADO

El movimiento de tierras calculado se ha realizado en base a cartografía básica, tal y como se ha indicado anteriormente, por lo que podrá sufrir variaciones con el estudio topográfico de detalle que se llevará a cabo antes de la ejecución del parque.

7.3.3 VIALES DEL PARQUE FOTOVOLTAICO

La red de viales del parque fotovoltaico está constituida por el vial de acceso al parque y los caminos interiores para el montaje y mantenimiento de los diferentes componentes.

En el diseño de la red de viales, se procede a la adecuación de los caminos existentes en los tramos en los que no tengan los requisitos mínimos necesarios para la circulación de los vehículos especiales, y en aquellos puntos donde no existan caminos se prevé la construcción de nuevos caminos.

Como características más importantes de los viales del parque hay que señalar el hecho de que se cumple con las especificaciones mínimas necesarias con un aprovechamiento máximo de los viales existentes, por lo que la afección resultante es la menor posible.

7.3.3.1 Vial de acceso

El acceso al PFV se realiza desde la Autovía Mudéjar A-23/E-7 tomando la salida 347 hacia la carreta nacional N-330, por la cual se continúa durante 2,2 kilómetros hasta tomar una salida a la derecha que cruza la autovía A-23/E-70 por un paso subterráneo y se llega a los caminos que rodean la zona en la que se ubica el PFV.

Se contempla la adecuación del camino existente en los tramos en los que no tenga los requisitos mínimos necesarios para la circulación de vehículos de montaje y mantenimiento de los componentes fotovoltaicos.

Los caminos tendrán las siguientes características:

- Anchura del vial: 5 m
- Sección de firme formada por dos capas: 10 cm de espesor de base y 15 cm de espesor de sub-base de zahorra, compactada al 98 % P.M.
- Pendiente longitudinal máxima del 8 %.
- Radio mínimo de curvatura en el eje de 10 m.
- Talud de desmonte 1/1.
- Talud de terraplén 3/2.
- Talud de firme 3/2.
- Cunetas de 80 cm de anchura y 40 cm de profundidad (para la evacuación de las aguas de escorrentía).
- Espesor de excavación de tierra vegetal de 25 cm.

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº. Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO Aº.: VD00222-22A
DEAFECHA: 26/1/22

E-VISADO

7.3.3.2 Viales interiores

Los viales interiores del parque fotovoltaico partirán desde los puntos de acceso al recinto. Se construirán caminos principales que llegarán a los Centros de Transformación, así como viales perimetrales que se conectarán con los caminos principales.

Tendrán las siguientes características:

- Anchura del vial: 4 m
- Sección de firme formada por dos capas: 10 cm de espesor de base y 15 cm de espesor de sub-base de zahorra, compactada al 98 % P.M.
- Pendiente longitudinal máxima del 8 %.
- Radio mínimo de curvatura en el eje de 10 m.
- Talud de desmonte 1/1.
- Talud de terraplén 3/2.
- Talud de firme 3/2.
- Cunetas de 80 cm de anchura y 40 cm de profundidad (para la evacuación de las aguas de escorrentía).

7.3.3.3 Drenaje

Para la evacuación de las aguas de escorrentía se dispone de dos tipos de drenaje: drenaje longitudinal y drenaje transversal.

Para el tipo de drenaje longitudinal, se han previsto cunetas laterales de tipo "V" a ambos márgenes de los viales con la sección y dimensiones adecuadas.

El tipo de drenaje transversal se utilizará en los puntos bajos de los viales interiores en los que se puedan producir acumulaciones de agua, instalando en esos puntos obras de fábrica y/o vados hormigonados que faciliten la evacuación del agua.

7.3.4 HINCADO DE LOS SEGUIDORES SOLARES

El método principal de instalación de seguidores fotovoltaicos en este parque es el hincado, ya que es el más apropiado debido a las características geológicas del terreno. Esta tecnología permite minimizar la afección sobre el terreno ya que no requiere cimentaciones.

Este sistema permite fijar cada pilote al terreno ajustando la profundidad del hincado mediante la utilización de una máquina hidráulica. Para ello, se fija el pilote a la parte

COLEGIO OFICIAL DE INGENIEROS
INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº.Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO A.: VD00222-22A
DEAFECHA: 26/1/22

E-VISADO

superior de la máquina y mediante un control electrónico, se regula la velocidad, orientación y fuerza de hincado. Este proceso resulta ágil y económico.

Durante la fase de construcción del parque se llevará a cabo un estudio geotécnico del terreno, así como el test de hincado. Si en alguna de las zonas, el terreno no fuese apropiado para este método, se estudiará otro tipo de anclaje de la estructura, como podría ser mediante tornillo o zapata de hormigón.

7.3.5 CIMENTACIÓN DE POWER STATIONS

El inversor y centro de transformación forman la Power Station que se ubicará sobre plataforma de hormigón cubierta de cama de arena y con un acerado perimetral que evite la entrada de humedad, tanto si es un contenedor metálico o un prefabricado de hormigón.

La cimentación se realizará con base de zapatas de hormigón y muros de ladrillo de fábrica para el apoyo del contenedor y elevarlo sobre el nivel del terreno para facilitar la ventilación y el acceso al montaje y mantenimiento del cableado.

7.3.6 ZANJAS PARA EL CABLEADO

Las zanjas tendrán por objeto alojar las líneas subterráneas de baja y media tensión, el conductor de puesta a tierra, el cableado de vigilancia y la red de comunicaciones.

El trazado de las zanjas se ha diseñado tratando que sea lo más rectilíneo posible y respetando los radios de curvatura mínimos de cada uno de los cables utilizados.

Las canalizaciones principales se dispondrán junto a los caminos de servicio, tratando de minimizar el número de cruces, así como la afección al medio ambiente y a los propietarios de las fincas por las que trascurren.

En el parque nos encontraremos con dos tipos de zanjas:

- Zanja en tierra
- Zanja para cruces

7.3.6.1 Zanja en tierra

La zanja en tierra se caracteriza porque los cables se disponen enterrados directamente en el terreno, sobre un lecho de arena lavada de río. Las dimensiones de la zanja atenderán al número de cables a instalar.

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº. Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO Aº.: VD00222-22A

DEAFECHA: 26/1/22

E-VISADO

Los cables se tienden sobre una capa base de unos 10 cm de espesor, y encima de ellos irá otra capa de arena hasta completar un mínimo de 30 cm. Sobre ésta se coloca transversalmente una protección mecánica (ladrillos, rasillas, cerámicas de PPC, etc.).

Posteriormente se rellenará la zanja con una capa de espesor variable de material seleccionado y se terminará de rellenar con tierras procedentes de la excavación, colocando a 25-35 cm de la superficie la cinta de señalización que advierta de la existencia de cables eléctricos.

7.3.6.2 Zanjas para cruces

Las canalizaciones en cruces serán entubadas y estarán constituidas por tubos de material sintético y amagnético, hormigonados, de suficiente resistencia mecánica y debidamente enterrados en la zanja.

El diámetro interior de los tubos para el tendido de los cables será de 160 ó 200 mm en función de la sección de conductor, debiendo permitir la sustitución del cable averiado.

Estas canalizaciones deberán quedar debidamente selladas en sus extremos.

Las zanjas se excavarán según las dimensiones indicadas en planos, atendiendo al número de cables a instalar. Sus paredes serán verticales, proveyéndose entibaciones en los casos que la naturaleza del terreno lo haga necesario. Los cables entubados irán protegidos por una capa de hormigón de HM-20 de espesor variable en función de los conductores tendidos.

El resto de la zanja se rellenará con tierras procedentes de la excavación, con el mismo material que existía en ella antes de su apertura, colocando a 25-35 cm de la superficie la cinta de señalización que advierta de la existencia de cables eléctricos.

7.3.7 ARQUETAS

Las arquetas serán prefabricadas o de ladrillo sin fondo para favorecer la filtración de agua. En la arqueta, los tubos quedarán como mínimo a 25 cm por encima del fondo para permitir la colocación de rodillos en las operaciones de tendido. Una vez tendido el cable, los tubos se sellarán con material expansible, yeso o mortero ignífugo de forma que el cable quede situado en la parte superior del tubo. La situación de los tubos en la arqueta será la que permita el máximo radio de curvatura.

Las arquetas ciegas se rellenarán con arena. Por encima de la capa de arena se rellenará con tierra cribada compactada hasta la altura que se precise en función del acabado superficial que le corresponda.

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº.Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO AP.: VD00222-22A
DE FECHA: 26/1/22

E-VISADO

En todos los casos, deberá estudiarse por el proyectista el número de arquetas y su distribución, en base a las características del cable y, sobre todo, al trazado, cruces, obstáculos, cambios de dirección, etc., que serán realmente los que determinarán las necesidades para hacer posible el adecuado tendido del cable.

7.3.8 HITOS DE SEÑALIZACIÓN

Para identificar el trazado de la red subterránea de media tensión fuera del parque fotovoltaico se colocarán hitos de señalización de hormigón prefabricados cada 50 m y en los cambios de dirección.

En estos hitos de señalización se indicará en la parte superior una referencia que advierta de la existencia de cables eléctricos.

7.4 INSTALACIONES AUXILIARES

Se construirán instalaciones auxiliares para mantener la seguridad y el correcto funcionamiento del parque. Durante la fase de construcción se habilitará una zona de acopio que permita el desarrollo de la obra. El resto de instalaciones descritas a continuación serán de carácter permanente.

7.4.1 ZONA DE ACOPIO Y MAQUINARIA

Para facilitar las labores de construcción del PFV se dispondrá de zona de acopio para depositar el material y maquinaria necesarios.

7.4.2 VALLADO PERIMETRAL

Para disminuir el efecto barrera debido a la instalación de la planta fotovoltaica, y para permitir el paso de fauna, el vallado perimetral de la planta se ejecutará dejando un espacio libre desde el suelo de 20 cm y con malla cinegética. La malla del vallado en su parte inferior estará formada por cuadros con un área mínima de 300 cm². El vallado perimetral tendrá una altura de 2 metros y carecerá de elementos cortantes o punzantes como alambres de espino o similar. En el recinto quedarán encerrados todos los elementos descritos de las instalaciones y dispondrá de una puerta de dos hojas, para acceso a la planta solar.

Se ejecutará una franja vegetal en torno al vallado perimetral de la planta fotovoltaica con especies propias de la zona de tipo arbustivo y arbóreo, mediante plantaciones al tresbolillo de plantas procedentes de vivero de al menos dos sabias en una densidad suficiente, de forma que se minimice la afección de las instalaciones fotovoltaicas en el paisaje. Se realizarán riegos periódicos al objeto de favorecer el más rápido crecimiento durante al menos los tres primeros años desde su plantación. Asimismo, se realizará la

COLEGIO OFICIAL DE INGENIEROS
INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº.Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO AP.: VD00222-22A
DE FECHA: 26/1/22

E-VISADO

reposición de marras que sea necesaria para completar el apantallamiento vegetal. La anchura de la franja vegetal será de 8 metros, salvo en zonas colindantes con vegetación natural o con viales de acceso al parque.

7.4.3 SISTEMA DE SEGURIDAD Y VIGILANCIA

Para la protección del perímetro se utilizará un sistema de vídeo vigilancia con cámaras térmicas motorizadas. Las cámaras se distribuirán por todo el perímetro de la instalación alimentándose mediante un Sistema de Alimentación Ininterrumpida (SAI), los cables para esta alimentación se llevarán enterrados en zanjas que discurren por todo el perímetro del vallado.

El sistema analiza las imágenes de las cámaras detectando los objetos móviles e identifica personas o el tipo de objetos indicados. El sistema descarta objetos como bolsas, sombras, reflejos, pequeños animales, etc... Cuando una persona accede al área que se ha señalado como protegida, un vídeo con la alarma es enviado a la central de monitorización, que chequea la alarma en cuestión.

No es imprescindible que el centro de control se sitúe dentro del parque fotovoltaico, ya que el sistema de vigilancia es accesible desde cualquier lugar vía internet.

7.4.4 EDIFICIO DE CONTROL Y MANTENIMIENTO

El edificio de control y mantenimiento del PFV se encuentra junto a una de las puertas de acceso del PFV, como se muestra en los planos.

El edificio integrará el control operativo y de seguridad del parque fotovoltaico. Incluirá todas las instalaciones auxiliares necesarias para su correcto uso. El edificio de operación y mantenimiento (O&M) se construirá con paneles prefabricados de hormigón y la cubierta será de panel sándwich con una pendiente del 10%, y tendrá una altura interior máxima de 2,40 m.

El edificio no tiene necesidad de dotación de servicios urbanísticos de abastecimiento de agua ni de suministro de energía eléctrica. El agua potable necesaria se transportará mediante un camión cisterna y se almacenará en un depósito. Las aguas residuales serán retiradas por un gestor autorizado de residuos. Estas aguas serán recogidas mediante una red horizontal de tuberías, que por gravedad se evacuarán al exterior a través de una arqueta sifónica y tuberías de PVC que las conducirán a una fosa séptica dimensionada con la capacidad suficiente para la ocupación prevista del edificio. La fosa se equipará con una alarma que advierta del llenado o saturación de los tanques. El

edificio se alimentará eléctricamente desde el cuadro de baja tensión de los centros de transformación.

Se citan a continuación las áreas que albergará el edificio principal de operación y mantenimiento.

- o Cocina.
- Aseos y vestuarios.
- Despacho y sala de reuniones.
- Sala de operadores.
- Sala de CCTV.
- Almacén principal.

Además, la instalación contará con un área al aire libre anexa al edificio que permitirá el acceso a vehículos para el correcto mantenimiento del parque.

7.4.5 PUNTO LIMPIO

El PFV contará con un Punto Limpio instalado en módulo de residuos tipo ARC RES 1A, que quedará ubicado próximo a una de las entradas y junto al camino principal.

7.4.6 ESTACIÓN METEOROLÓGICA

Para el correcto funcionamiento del PFV es necesario conocer las condiciones ambientales en tiempo real. Para ello, se propone la inclusión de una estación meteorológica con un mínimo de cuatro puntos de monitorización ambiental.

La estación meteorológica deberá medir las siguientes variables: irradiación, precipitaciones, temperatura, velocidad y dirección del viento.

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº.Colegiado.: 0002474
PEDRO MACHIN ITURRIA

VISADO AP.: VD00222-22A

IDEAFECHA: 26/1/22

E-VISADO

8 INFRAESTRUCTURAS DE EVACUACIÓN DE ENERGÍA DEL PARQUE FOTOVOLTAICO LA MALLATA

Las infraestructuras de evacuación de energía del PFV LA MALLATA son las siguientes:

- CENTRO DE ENTREGA PFV LA MALLATA 15 kV
- LÍNEA SUBTERRÁNEA 15 kV CENTRO DE ENTREGA PFV LA MALLATA SET PLHUS
- SET PLHUS 15 kV (existente)

8.1 CENTRO DE ENTREGA PFV LA MALLATA

El presente proyecto contempla la construcción de un Centro de Entrega (CE) que recoja la energía generada en el PFV, la cuantifique y la evacue a través de la Línea Subterránea de 15 kV. El CE es una caseta prefabricada que incluye toda la aparamenta necesaria, se ubica en el límite del recinto vallado siendo accesible desde el exterior y encontrándose debidamente señalizado. Se facilitará el acceso libre, directo y permanente a dicho centro de entrega a E-Distribución como empresa propietaria de la distribución de energía de la zona.

8.1.1 CARACTERÍSTICAS DEL CENTRO DE ENTREGA

El Centro de Entrega objeto de este proyecto consta de una única envolvente, en la que se encuentra toda la aparamenta eléctrica, máquinas y demás equipos. Ver Ilustración 4.

El Centro de Entrega albergará la siguiente equipación:

- Celda de medida contador
- Celda de protección con interruptor automático y protecciones
- 2 Celdas entrada/salida interruptor-seccionador

El edificio no tiene necesidad de dotación de servicios urbanísticos, de servicios de abastecimiento, evacuación de agua, energía eléctrica ni eliminación de residuos.

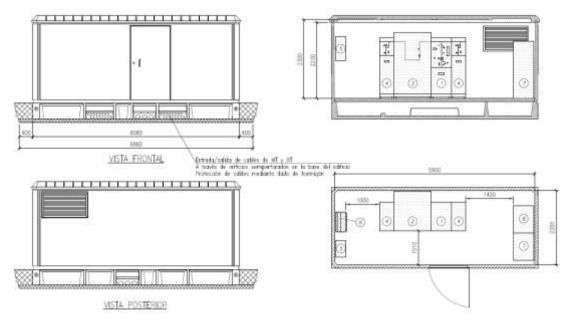


Ilustración 4. Centro de Entrega 15 kV

8.1.2 CARACTERÍSTICAS DE LA OBRA CIVIL

El Centro de Entrega, consta de una única envolvente, en la que se encuentra toda la aparamenta eléctrica, y demás equipos.

Se construirá una solera de hormigón capaz de soportar los esfuerzos verticales previstos con las siguientes características:

- Estará construida en hormigón armado de 15 cm de grosor con varillas de 4 mm y cuadro 20 x 20 cm.
- Tendrá unas dimensiones tales que abarquen la totalidad de la superficie del Centro de Medida, sobresaliendo 25 cm por cada lado.
- Incorporará la instalación de tubos de paso para las puestas a tierra.
- Sobre la solera, y para que el edificio se asiente correctamente, se dispondrá una capa de arena de 10 cm de grosor.

8.2 LÍNEA SUBTERRÁNEA 15 kV CENTRO DE ENTREGA PFV LA MALLATA – SET PLHUS

Desde el Centro de Entrega del Parque Fotovoltaico La Mallata se evacúa la energía mediante una Línea Subterránea de Media Tensión de 15 kV hasta la SET PLHUS. El trazado de dicha línea de evacuación se realiza por el término municipal de Huesca y comparte zanja con la línea subterránea de evacuación del Parque Fotovoltaico La Hoya, instalación desarrollada por otra sociedad en las proximidades.

La instalación proyectada se trata de una línea de tercera categoría, en la que el suministro se realizará bajo tensión alterna trifásica de 15 kV de tensión nominal a una frecuencia de 50 Hz. La longitud desde el Centro de Entrega hasta la SET es de aproximadamente 5 kilómetros. La línea discurre principalmente por lindes de parcelas y caminos públicos.

Los conductores serán de aluminio del tipo Al RH5Z1 12 / 20 kV, con aislamiento de polietileno reticulado (XLPE) y cubierta de policloruro de vinilo, enterrados directamente en terreno. Como se puede ver en la Tabla 6, la máxima caída de tensión es de **1,68** %, valor por debajo del límite recomendado del 2 %.

Tabla 6. Caída de tensión en circuito de media tensión de CE a SET

Circuito	De	Α	Potencia Acumulada	Intensidad Acumulada	Long	Nº Ternas	Sección	lmax	Caída tensión		rdida tencia
			MW	Α	km	Terrias	mm²	Α	%	%	kW
CE-SET	CE	SET	11,46	464,31	4,95	2	400	581,00	1,68%	1,40%	160,07

8.2.1 CABLE AISLADO DE POTENCIA

Los cables a utilizar en la red subterránea de media tensión serán cables subterráneos unipolares de aluminio, con aislamiento seco termoestable (polietileno reticulado XLPE), con pantalla semiconductora sobre conductor y sobre aislamiento y con pantalla metálica de aluminio.

Se ajustarán a lo indicado en las normas UNE-HD 620-10E, UNE 211620 y en la ITC-LAT 06 del RLAT.

El circuito de la línea subterránea de media tensión se compondrá de dos ternas de tres conductores unipolares y de las características que se indican en la siguiente tabla:

Características	Valores
Nivel de aislamiento	12/20 (kV)
Naturaleza del conductor	Aluminio
Sección del conductor	400 mm ²

8.2.2 TERMINACIONES

Las terminaciones serán adecuadas al tipo de conductor empleado en cada caso. Existen dos tipos de terminaciones para las líneas de Media Tensión:

- Terminaciones convencionales contráctiles o enfilables en frío, tanto de exterior como de interior: se utilizarán estas terminaciones para la conexión a instalaciones existentes con celdas de aislamiento al aire o en las conversiones aéreo-

subterráneas. Estas terminaciones serán acordes a las normas UNE 211027, UNE HD 629-1 y UNE EN 61442.

Conectores separables: se utilizarán para instalaciones con celdas de corte y aislamiento en SF6. Serán acordes a las normas UNE-HD629-1 y UNE-EN 61442.

8.2.3 EMPALMES

Los empalmes serán adecuados para el tipo de conductor empleado y serán aptos igualmente para la tensión de servicio.

En general se utilizarán siempre empalmes contráctiles en frío, tomando como referencia las normas UNE: UNE211027, UNE-HD629-1 y UNE-EN 61442.

En aquellos casos en los que requiera el uso de otro tipo de empalmes (cables de distintas tecnologías, etc.) será necesario el acuerdo previo con la compañía distribuidora.

8.2.4 PUESTAS A TIERRA

Las pantallas metálicas de los cables de Media Tensión se conectarán a tierra en cada uno de sus extremos.

8.2.5 CANALIZACIÓN SUBTERRÁNEA

Las zanjas tendrán por objeto alojar la línea subterránea de media tensión, el conductor de puesta a tierra y la red de comunicaciones.

El trazado de la zanja se ha diseñado tratando que sea lo más rectilíneo posible y respetando los radios de curvatura mínimos de cada uno de los cables utilizados.

Las canalizaciones principales se dispondrán junto a los caminos de servicio, tratando de minimizar el número de cruces así como la afección al medio ambiente y a los propietarios de las fincas por las que trascurren.

En la línea, al igual que para el parque fotovoltaico, nos encontraremos con dos tipos de zanjas:

- Zanja en tierra
- Zanja para cruces

8.2.5.1 Zanja en tierra

La zanja en tierra se caracteriza porque los cables se disponen enterrados directamente en el terreno, sobre un lecho de arena lavada de río. Las dimensiones de la zanja atenderán al número de cables a instalar.

COLEGIO OFICIAL DE INGENIEROS INDUSTRIALES DE ARAGÓN Y LA RIOJA

Nº. Colegiado.: 0002474
PEDRO MACHINITURRIA

VISADO Aº.: VD00222-22A
DEAFECHA: 26/1/22

E-VISADO

Los cables se tienden sobre una capa base de unos 10 cm de espesor, y encima de ellos irá otra capa de arena hasta completar un mínimo de 30 cm. Sobre ésta se coloca transversalmente una protección mecánica (ladrillos, rasillas, cerámicas de PPC, etc.).

Posteriormente se rellenará la zanja con una capa de espesor variable de material seleccionado y se terminará de rellenar con tierras procedentes de la excavación, colocando a 25-35 cm de la superficie la cinta de señalización que advierta de la existencia de cables eléctricos.

8.2.5.2 Zanja para cruces

Las canalizaciones en cruces serán entubadas y estarán constituidas por tubos de material sintético y amagnético, hormigonados, de suficiente resistencia mecánica, debidamente enterrados en la zanja.

El diámetro interior de los tubos para el tendido de los cables será de 160 ó 200 mm en función de la sección de conductor, debiendo permitir la sustitución del cable averiado.

Estas canalizaciones deberán quedar debidamente selladas en sus extremos.

Las zanjas se excavarán según las dimensiones indicadas en planos, atendiendo al número de cables a instalar. Sus paredes serán verticales, proveyéndose entibaciones en los casos que la naturaleza del terreno lo haga necesario. Los cables entubados irán protegidos por una capa de hormigón de HM-20 de espesor variable en función de los conductores tendidos.

El resto de la zanja se rellenara con tierras procedentes de la excavación, con el mismo material que existía en ella antes de su apertura, colocando a 25 – 35 cm de la superficie la cinta de señalización que advierta de la existencia de cables eléctricos.

8.2.5.3 Arquetas

Las arquetas serán prefabricadas o de ladrillo sin fondo para favorecer la filtración de agua. En la arqueta, los tubos quedarán como mínimo a 25 cm por encima del fondo para permitir la colocación de rodillos en las operaciones de tendido. Una vez tendido el cable, los tubos se sellarán con material expansible, yeso o mortero ignífugo de forma que el cable quede situado en la parte superior del tubo. La situación de los tubos en la arqueta será la que permita el máximo radio de curvatura.

Las arquetas ciegas se rellenarán con arena. Por encima de la capa de arena se rellenará con tierra cribada compactada hasta la altura que se precise en función del acabado superficial que le corresponda.

En todos los casos, deberá estudiarse en fase de ejecución el número de arquetas y su distribución, en base a las características del cable y, sobre todo, al trazado, cruces, obstáculos, cambios de dirección, etc., que serán realmente los que determinarán las necesidades para hacer posible el adecuado tendido del cable.

8.2.5.4 Cruzamientos, proximidades y paralelismos en la línea subterránea de evacuación

Los cables subterráneos deberán cumplir los requisitos señalados en el apartado 5 de la ITC-LAT 06 del RLAT, las correspondientes Especificaciones Particulares de la compañía distribuidora aprobadas por la Administración y las condiciones que pudieran imponer otros órganos competentes de la Administración o empresas de servicios, cuando sus instalaciones fueran afectadas por tendidos de cables subterráneos de MT.

Cuando no se puedan respetar aquellas distancias, deberán añadirse las protecciones mecánicas especificadas en el propio reglamento.

No se prevé que se produzcan otros cruzamientos distintos de los contemplados en los planos que se adjuntan. No obstante, antes de proceder a la apertura de zanjas se abrirán unas catas de reconocimiento para confirmar o rectificar el trazado previsto en el proyecto.

A continuación se resumen, las condiciones a que deben responder los cruzamientos, proximidades y paralelismos de cables subterráneos.

DISTANCIAS DE SEGURIDAD							
Cruzamiento	Instalación	Profundidad	Observaciones				
Carreteras	Entubada y hormigonada	≥ 0,6 m de vial	Siempre que sea posible, el cruce se realizará perpendicular al eje del vial				
Ferrocarriles	Entubada y hormigonada	≥ 1,1 m de la cara inferior de la traviesa	La canalización entubada se rebasará 1,5 m por cada extremo. Siempre que sea posible, el cruce se realizará perpendicular a la vía.				
Depósitos de carburante	Entubada (*)	≥ 1,2 m	La canalización rebasará al depósito en 2 m por cada extremo.				
Conducciones de alcantarillado	Enterrada ó entubada	-	Se procurará pasar los cables por encima de las conducciones de alcantarillado (**).				

^{(*):} Los cables se dispondrán separados mediante tubos, conductos o divisorias constituidos por materiales de adecuada resistencia mecánica.

^{(**):} En el caso de que no sea posible, el cable se pasará por debajo y se dispondrán separados mediante tubos, conductos o divisorias, constituidos por materiales de adecuada resistencia mecánica.

	COLEGIO OFICIAL DE INGENIEROS
_	INDUSTRIALES DE ARAGÓN Y LA RIOJA
メ	Nº.Colegiado.: 0002474 PEDRO MACHIN ITURRIA
4 T	A∕ISADO A º. : VD00222-22A DE∗FECHA : 26/1/22
	E-VISADO

DISTANCIAS DE SEGURIDAD							
Cruzamiento	Instalación	Distancia	Observaciones				
Cables eléctricos	Enterrada ó entubada	≥ 25 cm	Siempre que sea posible, los conductores de AT discurrirán por debajo de los de BT. Los empalmes de ambas instalaciones distarán al menos 1 m del punto de cruce (*).				
Cables telecomunicaciones	Enterrada ó entubada	≥ 20 cm	Los empalmes de ambas instalaciones distarán al menos 1 m del punto de cruce (*).				
Canalizaciones de agua	= 11.1.1.1 ≥ 20 cm		Los empalmes de ambas instalaciones distarán al menos 1 m del punto de cruce (*).				
Acometidas o Conexiones de servicio a un edificio	Conexiones de servicio a un - ambos		La entrada de las conexiones de servicio a los edificios, tanto de BT como de MT, deberá taponarse hasta conseguir una estanqueidad perfecta (*).				

(*): En el caso de que no sea posible cumplir con esta condición, será necesario separar ambos servicios mediante colocación bajo tubos de la nueva instalación, conductos o colocación de divisorias constituidos por materiales de adecuada resistencia mecánica.

DISTANCIAS DE SEGURIDAD								
Cruzamiento	Instalación	Presión de la instalación	Distancia sin protección adicional	Distancia con protección adicional (*)				
Canalizaciones	Enterrada ó	nterrada ó En alta presión > 4 bar		≥ 25 cm				
y acometidas de gas	entubada	En baja y media presión ≤ 4 bar	≥ 40 cm	≥ 25 cm				
Acometida interior de gas	Enterrada ó entubada	En alta presión > 4 bar	≥ 40 cm	≥ 25 cm				
(**)	Gillabada	En baja y media presión ≤ 4 bar	≥ 20 cm	≥ 10 cm				

- (*): La protección complementaria estará constituida preferentemente por materiales cerámicos y garantizará una cobertura mínima de 0,45 m a ambos lados del cruce y 0,30 m de anchura centrada con la instalación que se pretende proteger. En el caso de líneas subterráneas de alta tensión entubadas, se considerará como protección suplementaria el propio tubo.
- (**): Se entenderá por acometida interior de gas el conjunto de conducciones y accesorios comprendidos entre la llave general de la compañía suministradora y la válvula de seccionamiento existente entre la regulación y medida.

	DIS	TANCIAS DE	SEGURIDAD
Proximidad o paralelismo	Instalación	Distancia	Observaciones
Cables eléctricos	Enterrada ó entubada	≥ 25 cm	Los conductores de AT podrán instalarse paralelamente a conductores de BT o AT (*).

	COLEGIO OFICIAL DE INGENIEROS	
/	INDUSTRIALES DE ARAGÓN Y LA RIOJA	٩
\prec	Nº.Colegiado.: 0002474 PEDRO MACHIN ITURRIA	
4 I	A∕ISADO A º. : VD00222-22A DE FECHA : 26/1/22	
	F-VISADO	

	DIS	TANCIAS DE	SEGURIDAD
Proximidad o paralelismo	Instalación	Distancia	Observaciones
Cables telecomunicaciones	Enterrada ó entubada	≥ 20 cm	(*)
Canalizaciones de agua	Enterrada ó entubada	≥ 20 cm	Los empalmes de ambas instalaciones distarán al menos 1m del punto de cruce (*).

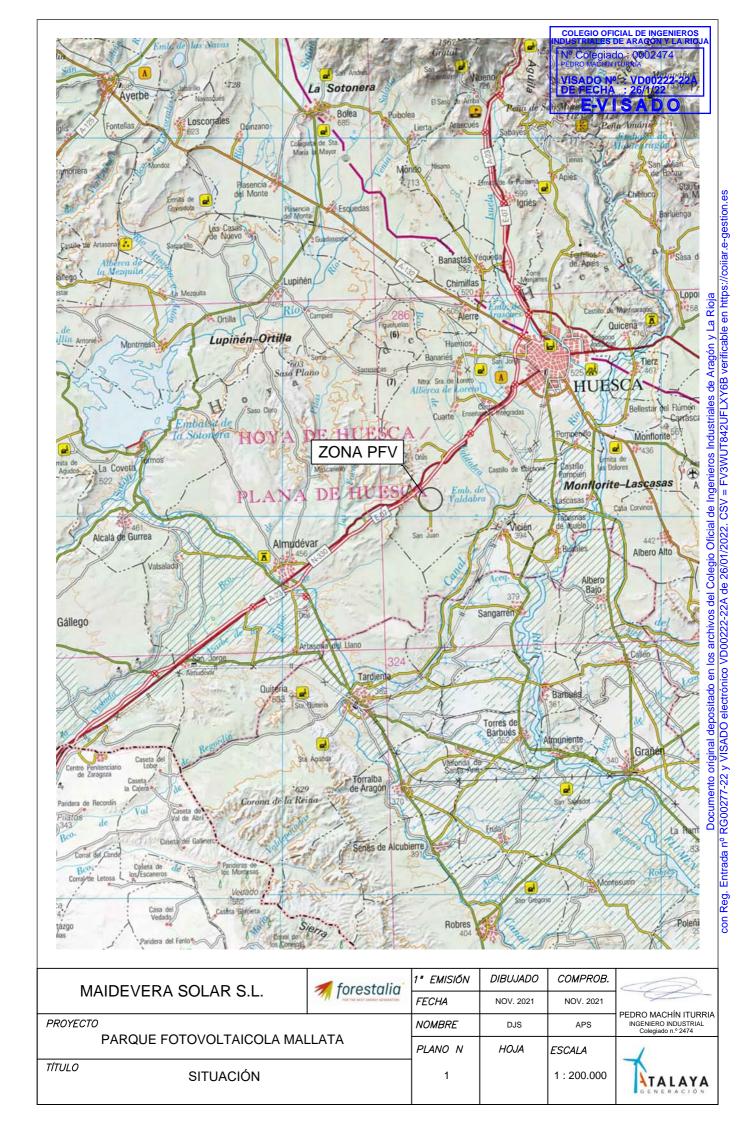
(*): En el caso de que no sea posible cumplir con esta condición, será necesario separar ambos servicios mediante colocación bajo tubos de la nueva instalación, conductos o colocación de divisorias constituidos por materiales de adecuada resistencia mecánica.

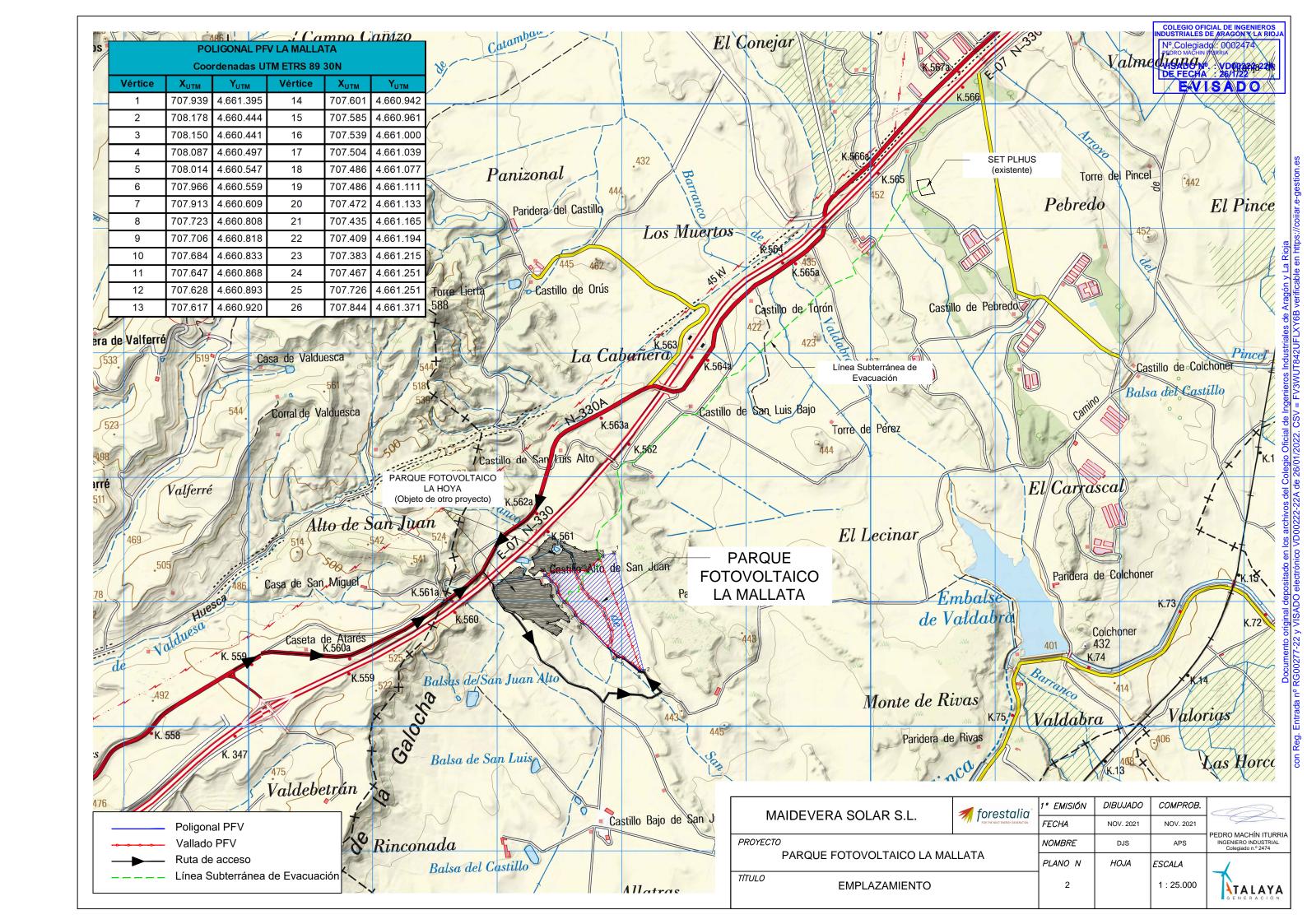
	DIS	TANCIAS DE SEGUE	RIDAD	
Proximidad o paralelismo	Instalación	Presión de la instalación	Distancia sin protección adicional	Distancia con protección adicional (*)
Canalizaciones	Enterrada ó	En alta presión > 4 bar	≥ 40 cm	≥ 25 cm
y acometidas de gas	entubada	En baja y media presión ≤ 4 bar	≥ 25 cm	≥ 15 cm
Acometida	Enterrada ó	En alta presión > 4 bar	≥ 40 cm	≥ 25 cm
interior de gas (**)	entubada	En baja y media presión ≤ 4 bar	≥ 20 cm	≥ 10 cm

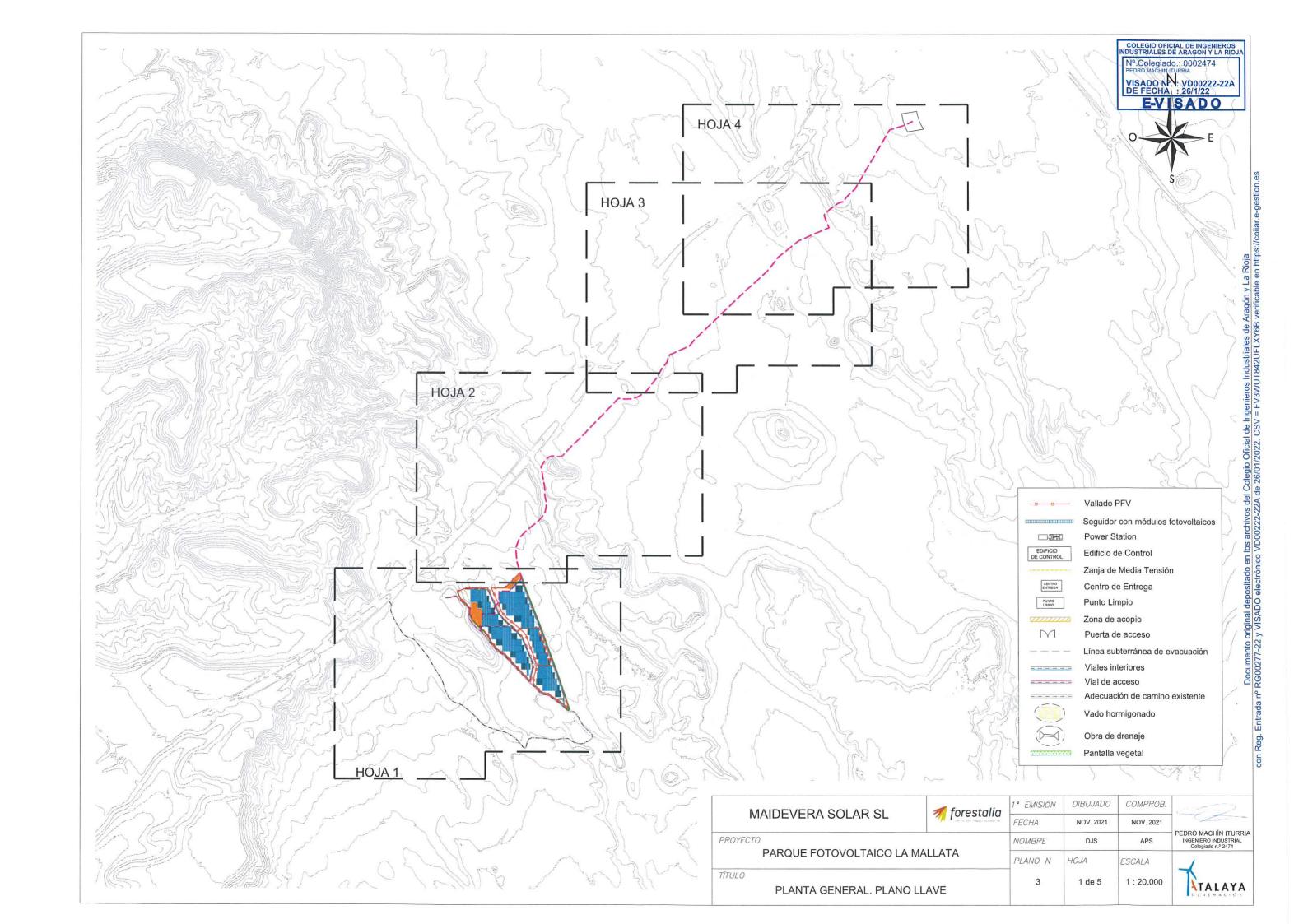
- (*): La protección complementaria estará constituidos preferentemente por materiales cerámicos o por tubos de adecuada resistencia.
- (**): Se entenderá por acometida interior de gas el conjunto de conducciones y accesorios comprendidos entre la llave general de la compañía suministradora y la válvula de seccionamiento existente entre la regulación y medida.

9 PLANIFICACIÓN

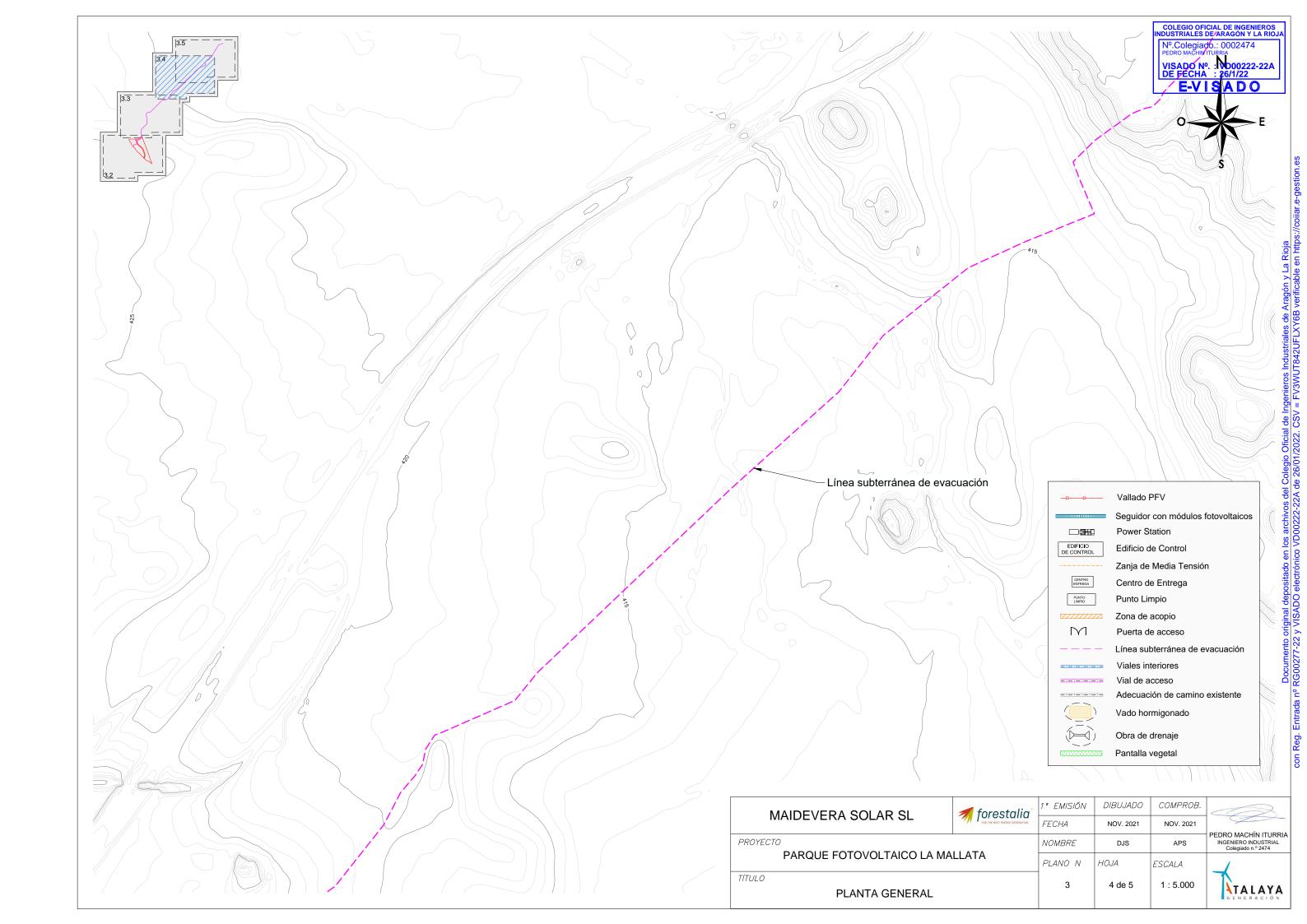
	ME	MES 1	ME	MES 2	ME	MES 3	MES 4	3.4	MES 5	S 5	MES 6	9 9
Descripción	SEMANA 1-2	SEMANA 3-4	SEMANA 5-6	SEMANA 7-8	SEMANA9-10	SEM ANA 11-12	SEMANA 13-14	SEMANA 15-16	SEM ANA 17-18	SEM ANA 19-20	SEMANA 21-22	SEMANA 23-24
INICIO DE OBRAS												
OBRA CIVIL												
Replanteos												
Caminos												
Hincado de placas												
Apertura zanjas												
Acondicionamiento zanjas												
Cierre de zanjas												
Restauración												
OBRA ELÉCTRICA												
Acopio												
Tendido												
Conexionado												
MONT AJE PARQUE												
Montaje												
Conexionado eléctrico												
Acabado final												
SUBESTACIÓN / CENTRO DE ENTREGA												
Obra civil												
Acopio de materiales												
Montaje electro mecánico												
Puesta en marcha												
LINEA DE EVACUACIÓN												
Obra civil												
Tendido de conductores												
Conexionado												
Puesta en marcha												
TENSIÓN DISPONIBLE												
PUESTAEN MARCHAY PRUEBAS												
Puesta en marcha												
Fase de pruebas												
FUNCIONAMIENTO COMERCIAL DEL PARQUE												


10 CONCLUSIÓN


Con la presente separata, se entiende haber descrito adecuadamente las diferentes instalaciones del Parque Fotovoltaico LA MALLATA y su infraestructura de evacuación sobre el término municipal de Huesca, sin perjuicio de cualquier otra ampliación o aclaración que las autoridades competentes consideren oportunas.


Zaragoza, noviembre 2021 Fdo. Pedro Machín Iturria Ingeniero Industrial Colegiado № 2.474 COIIAR


PLANOS


- Situación
- Emplazamiento
- Planta general
- Ortofoto
- Trazado caminos
- Sección tipo caminos
- Zanjas tipo
- Parcelario
- Vallado
- Centro de Entrega
- Edificio de control
- PGOU

