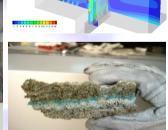
SITUACIÓN ACTUAL DE LA BIOMASA EN ARAGÓN: POTENCIALIDAD DE LA BIOMASA Y PROYECTOS EN MARCHA

BIOMASA, Fuente de Energía

Zaragoza, 21 de septiembre de 2011

Fernando Sebastián
Grupo BERA- Área Recursos Naturales
Fundación CIRCE

Introducción: Grupo BERA (Biomasa, Evaluación Recursos y Aprovechamiento)


- Análisis de viabilidad para el uso de biomasa en instalaciones de combustión y de co-combustión.
- Evaluación de Recursos de biomasa (SIG) y ensayos con cultivos energéticos.
- Diseño y adaptación de sistemas de combustión de pequeña potencia.
- Pretratamientos (secado y reducción de tamaño) y cocombustión.
- Sistemas de trigeneración basados en la combustión de biomasa (pequeña potencia).
- Análisis de Ciclo de Vida (ACV).

ÍNDICE

- INTRODUCCIÓN
- BIOCOMBUSTIBLES SÓLIDOS
 - Biomasa residual agrícola
 - Biomasa residual forestal
 - Cultivos energéticos
- BIOCOMBUSTIBLES LÍQUIDOS
 - Bioetanol
 - Biodiésel
- BIOMASA RESIDUAL HÚMEDA
- CONCLUSIONES

Introducción

En terminos generales, y desde el punto de vista del aprovechamiento energético de la biomasa, Aragón puede considerarse como un territorio

Montañoso

Cálido

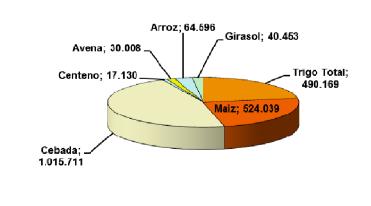
- Seco
- De baja densidad de población

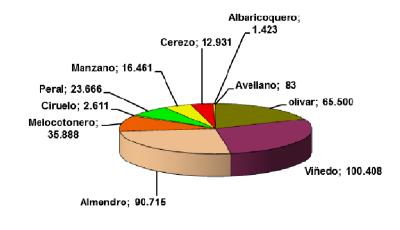
Introducción

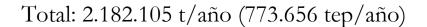
- Inviernos cortos de temperaturas frías y temperaturas muy altas en verano (temperatura anual media $\approx 15^{\circ}$ C)
- Precipitaciones escasas y no bien distribuidas (en promedio, 550 l m⁻² año⁻¹):
 - Escasa cubierta vegetal (una buena parte de la superficie forestal no está arbolada o presenta cobertura de matorral).
 - Baja productividad en las superficies de secano (54% de la superficie total agrícola).
 - Erosión.

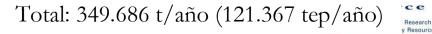
Biocombustibles sólidos

- Este tipo de combustibles deberían contribuir en España con 6,5 Mtep en 2020 (Planes anteriores asignaron 9,2 Mtep en 2005 y 16 Mtep en 1999):
 - 2,9 Mtep año-1 con residuos forestales (44,6%).
 - 1,3 Mtep año⁻¹ con residuos agrícolas (20,0%).
 - 1,2 Mtep año⁻¹ con cultivos energéticos (18,5%).
 - 1,1 Mtep año⁻¹ subproductos industriales orgánicos (16,9%).


Residuos agrícolas: potencial






Biomasa Residual Agricola Herbácea (BRAH) Potencial en Aragón (toneladas de paja/año)

Biomasa Residual Agricola Leñosa (BRAL) Potencial en Aragón (toneladas de podas/año)

Residuos agrícolas

Ø.

ncolas herbáceos...

Baja productividad

Planta de Briviesca, de la lluvias 16MWe; 102.000 trano

Finalmente

omplican la logística de xuministro de la

biomasa pero

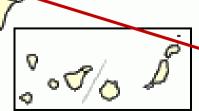
Varios pro<u>vectos se han</u>

materializado y algunos

están cerca de hacerlo

Planta de Sangüesa,

Ciertos factor 25 MM n 150000 ribão ido


al desarrollo de este sector...

Conocimiento y capacidad previos de asociaciones y profesionales del sector Planta de Miajadas,

Apuesta16188idida.0de tuña1

compañía eléctrica

Primas a la generación "bien ajustadas"

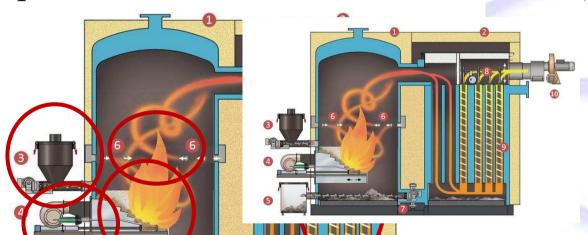
 \mathcal{O}_{\cdot}

Residuos agroindustriales

Orujillo

Hueso de oliva

Cáscara de almendra



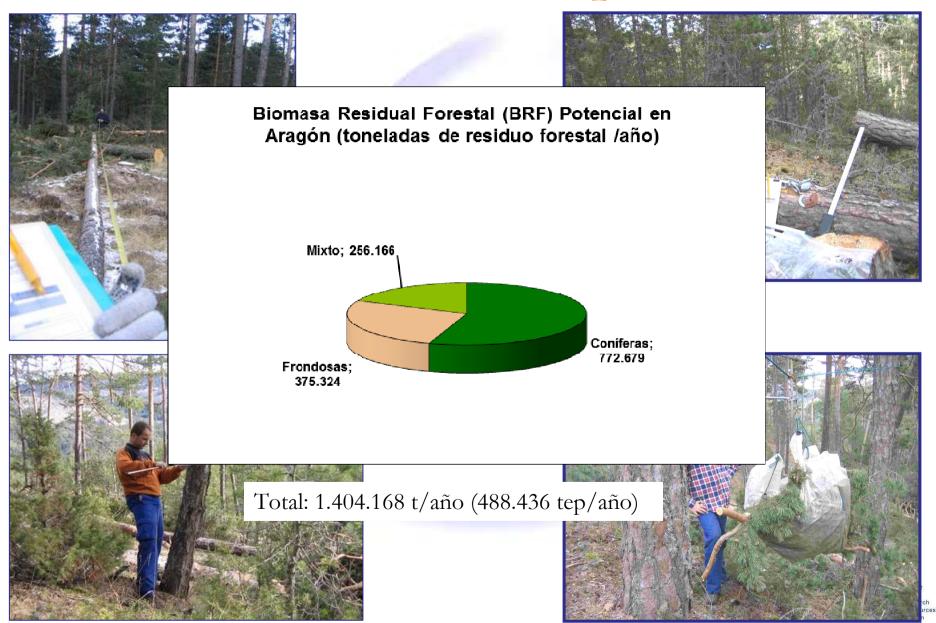
ce

Residuos agroindustriales

- Están siendo ampliamente utilizados en los sistemas de generación térmica
- Se han desarrollado incluso calderas especificas aptas para su utilización como combustible (LASIAN).

Sistema de alimentación

Parrilla


Aires primarios y secundarios

No hay que si vidat que las exportaciones istema de limpieza y extracción de muchos casos por las primas a la generación eléctrica

Legend:

- 1. Com Creadas en otros países han provocado que incluso plantas
- 2. Heat Exchanger 3. Feed System og eneración 6. Secondary air distribution de la company de la comp
- 4. Burner and ash removal system

Residuos forestales: potencial

Residuos forestales

Los bosques aragoneses...

Solid biofuels

- Pendientes pronunciadas
- Baja productividad de residuos 0,8-1,2 t.m.s ha⁻¹año⁻¹

• Baja automatización (No siempre son interesantes los resultados obtenidos con maquinaria que sí funciona en otros países).

Alto de coste residuos...

Pueden alcanzar fácilmente los 350 €/tep (al 50% humedad en base húmeda)

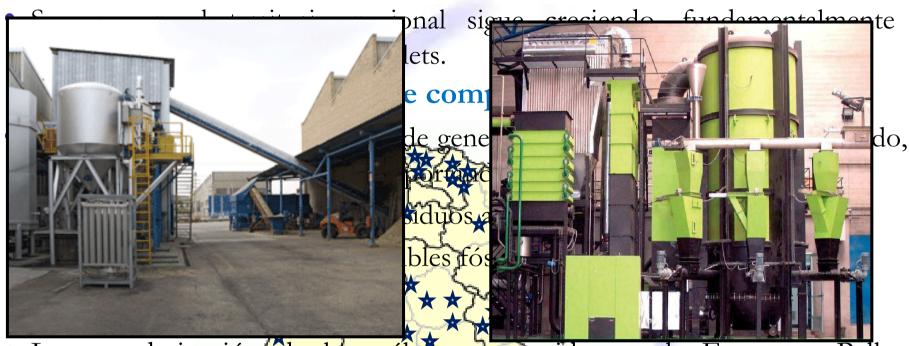
Otras barreras importantes

- Alto porcentaje de propiedad privada (60%).
- La cantidad de superficie forestal que necesita recibir e incluso debería recibir tratamientos selvícolas es muy importante debido al importante programa de plantación que se ha llevado a cabo desde los 50s).

Residuos forestales, generación eléctrica Así...

- A pesar de que las primas para la generación eléctrica con este tipo de recursos fueron sustancialmente incrementadas (siguen siendo menores que en otros países europeos)...
- A pesar de ser uno de los países más preocupados por los incendios forestales...

• A pesar de que más de 50 proyectos se han planteado a lo largo del territorio


nacional...

• ... solo una planta de generación eléctrica con biomasa está utilizando actualmente estos residuos (Planta de Corduente, 2 MW_e, propiedad de IBERDROLA).

Residuos de las industrias forestales

• La estandarización de los pélets promovida por la European Pellets Council TA (MINESER) está siendo introducida UASCOR incrementar su contribución

• Algunas compañías (TAIM WESER, GUASGOR, CIDAUT, etc.) han desarrollado unidades basadas en la gasificación que parece que van a despegar usando estos recursos como combustible.

Cultivos energéticos

• Varios ensayos e iniciativas privadas fueron o han sido desarrolladas, basadas en especies como el Cynara cardunculus L. (cardo), la Pawlonia o el miscanto (Panicum virgatum).

• En muchos casos, las productividades nunca alcanzaron los valores con los que promotores y agricultores lograran el equilibrio de rentabilidad para toda la cadena.

Cultivos energéticos

- En 2005 el Proyecto Singular Estratégico *On Cultivos*, con más de 32 socios, un presupuesto de 64 millones de euros (incluyendo iniciativa privada y pública) y un horizonte de 8 años, fue aprobado.
- La Fundación CIRCE y SODEMASA han realizado y están llevando a cabo ensayos en el marco de este proyecto, fundamentalmente en la provincia de Teruel, con varias especies, *Brassica carinata*, *triticale*, chopo, etc.

• Aunque el proyecto todavía no ha finalizado (2012), se puede decir que ciertas especies y aplicaciones han alcanzado las espectativas.

Cultivos energéticos

• Los métodos de recolección y sus propiedades intrínsecas como

• Los equipos de generación de calor adaptados y los sistemas de trigeneración de pequeña potencia (<1 MW_e) parecen una buena oportunidad para lograr un impacto positivo en toda la cadena (ACV, ACVE).

Cultivos energéticos: potencial

Total: 2.207.869 t/año (829.800 tep/año)

Biocombustibles líquidos

- Los consumos anuales de biodiesel y bioetanol en España se incrementan año a año.
- Los porcentajes obligatorios de sustitución (mezclas con diésel y gasolina respectivamente) se están cumpliendo.
- La capacidad nominal de producción instalada es incluso superior que los consumos actuales.

Sin embargo...

• Han aparecido algunos problemas estructurales y muchas plantas o compañías han desaparecido o han cesado su producción.

Biocombustibles líquidos: biodiésel

• Más de 40 plantas con una capacidad nominal instalada de casi 2,3 Mt año⁻¹ han sido construidas en la última década.

- Más de 22 plantas con una capacidad nominal instalada de casi 2,6 Mt año⁻¹ están en fase de construcción.
- 21 más están en proceso administrativo (2,4 Mt año-1)

Biocombustibles líquidos: biodiésel

- Aunque las producciones locales de girasol y colza no son despreciables, especialmente la de girasol, las plantas de biodiésel están basadas en las importaciones de palma, soja y colza.
- La crisis de precios de los productos alimenticios de 2007-2008, los precios de los combustibles fósiles y la productividad local han provocado que las plantas existentes hayan disminuido e incluso abandonado la producción.
- En la actualidad, más del 60% del consumo total de biodiésel proviene de la importación del combustible de países con mejores condiciones de producción (tasas, subvenciones, etc.).
- Para incentivar el mercado local el gobierno central ha incrementado los porcentajes obligatorios de sustitución. Se está barajando la posibilidad de incorporar nuevos aranceles a la importación de biodiésel.

Biomasa residual húmeda

La regulación medioambiental y las primas a la generación eléctrica han incrementado la contribución del biogás en España

• Fundamentalmente en instalaciones para el aprovechamientos de gas de vertedero (86% de la energía primaria generada con biogás).

En 2009, la producción de energía por habitante con biogás fue de 4,0 tep (1.000 habitantes)-1.

(En la UE fue de 16,7 tep (1.000 habitantes)⁻¹. Por ejemplo, Alemania tuvo 51,5 y el Reino Unido 27,8 toe (1.000 habitantes)-1 respectivamente).

Biomasa residual húmeda

- A pesar del número significativo de cabezas de ganado en Aragón y del importante número de explotaciones ganaderas, las plantas de digestión anaerobia son prácticamente testimoniales.
- Varios factores han ocasionado esta situación:
 - Las condiciones locales favorecen el uso directo como fertilizante.
 - Las condiciones climáticas no favorecen las plantas destinadas a la generación de calor.
 - La inyección de biogás a la red de gas natural no suele ser viable.
 - El efluente orgánico de estas plantas está menos valorado que en otros países.
 - La cofermentación con residuos agrícolas o con cultivos energéticos es menos viable que en otros países de la UE.
 - Las primas a la generación eléctrica no han sido lo suficientemente atractivas como para impulsar estas plantas.
 - Los sectores agrícola y ganadero siguen desconfiando de los resultados económicos y agronómicos.

Biomasa residual húmeda

de resolver esta situación el Proyecto Singular Estratégico Pro BIOGAS comenzó en 2007 (2007-2011). Codigestión de purín de cerdo y Purín de cerdo residuos de empresas frutícolas Más de 28 soci over y d de producción de l ostrando llas empresas del se ı viabilid hes españolas.

> Codigestión de estiércol y residuos de la producción de zumo

• El desarrollo y la investigación iniciados (cofermentación con sustratos locales como los residuos cítricos, tecnologías adaptadas a las condiciones y sustratos locales, etc.) y las propias plantas impulsadas por el proyecto persiguen que se logren los objetivos de penetración del biogás deseados.

0000

Conclusiones

• Las condiciones climáticas aragonesas, las productividades agrícola y forestal, la estructura del sector del biodiésel, la madurez de ciertas tecnologías de transformación disponibles y ciertos factores económicos importantes (precios de los combustibles fósiles, primas, costes logísticos, etc.) han causado que el aprovechamiento de la biomasa siga por debajo de lo que expresa su potencial.

No obstante...

• La estandarización de combustibles, los avances y adaptaciones tecnológicas a los recursos locales y las iniciativas tanto del sector privado como público que están en marcha permiten apuntar que este hecho ya está cambiando o va a cambiar en el corto plazo.

MUCHAS GRACIAS POR SU ATENCIÓN!

